
Process Model Discovery from
Sensor Event Data

Dominik Janssen1, Felix Mannhardt2,3, Agnes Koschmider1, and
Sebastiaan J. van Zelst4,5

1 Group Process Analytics, Kiel University, Germany
doj|ak@informatik.uni-kiel.de

2 Dept. of Technology Management, SINTEF Digital, Norway
felix.mannhardt@sintef.no

3 Dept. of Computer Science, NTNU, Norway
4 Fraunhofer Institute for Applied Information Technology,

Fraunhofer Gesellschaft, Germany
sebastiaan.van.zelst@fit.fraunhofer.de

5 Chair of Process and Data Science, RWTH Aachen University, Germany

Abstract. Virtually all techniques, developed in the area of process
mining, assume the input event data to be discrete, and, at a relatively
high level (i.e., close to the business-level). However, in many cases, the
event data generated during the execution of a process is at a much lower
level of abstraction, e.g., sensor data. Hence, in this paper, we present a
novel technique that allows us to translate sensor data into higher-level,
discrete event data, thus enabling existing process mining techniques to
work on data tracked at a sensory level. Our technique discretises the
observed sensor data into activities by applying unsupervised learning in
the form of clustering. Furthermore, we refine the observed sequences by
deducing imperative sub-models for the observed discretised data, i.e.,
allowing us to identify concurrency and interleaving within the data. We
evaluated the approach by comparing the obtained model quality for
several clustering techniques on a publicly available data-set in a smart
home scenario. Our results show that applying our framework combined
with a clustering technique yields results on data that otherwise would
not be suitable for process discovery.

Keywords: Process mining · sensor data · event correlation · IoT.

1 Introduction

The rise of the Internet-of-Things (IoT), i.e., interconnected devices, mechanical
and digital machines, gradually digitalises the day-to-day operations of modern-
day enterprises. More-and-more devices are interconnected and store valuable
traces of behavioural data, generated during their interaction with humans, as
well as other interconnected devices. For example, consider the concepts of au-
tonomous production and the adoption of robotics in healthcare, in which opera-
tional processes are gradually digitised and automated, utilising interconnecting
and communicating devices and machines.
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Whereas the design of a single device, connected to a larger network of de-
vices, remains manageable (though it is complex in its own right), deficiencies in
inter-device communication or handover of work-packages, easily lead to global
process under-performance. Hence, a clear understanding of the general flow of
work, as well as an understanding of bottlenecks and synchronisation points is of
utmost importance to further improve the efficiency of the executed processes.
Process mining techniques aim to exploit behavioural data, stored in the in-
formation systems to support the execution of processes and to distil process
models [1]. In particular, they can derive-and-construct process models based on
tracked event data, i.e., in a completely automated fashion.

In general, process mining relies on discrete event data, typically assumed to
be tracked at the business level, i.e., the event data directly relates to high-level
business process concepts. However, often, the level at which the event data is
tracked within information systems is at a much lower level.

Possible application scenarios are settings where the movement of objects or
people (entities) is tracked by motion sensors, light barriers or similar types of
sensors that only detect absence and presence of a person or object and cannot
distinguish between different observed entities. Those sensors can be found in
smart home settings, smart factories and healthcare-related applications. If in
these possible settings, it is of interest to discover frequent behaviour patterns
or abnormal behaviour, our proposed method provides a novel approach that
translates sensory data, into a process model. In particular, unlabelled raw sen-
sor events are aggregated and clustered by an unsupervised learning technique
to identify activities through clusters of related event sequences. To identify the
activities, we discover a process model for each identified cluster. The activi-
ties, labelled by a domain expert, serve as input for process mining-based model
discovery, which allows to identify concurrent and interleaving behaviour in sen-
sor event data. We evaluate our approach on the publicly available CASAS
dataset [2] and compare two clustering methods. The obtained results show
promising results, hinting towards a better result by using clustering based on a
self-organising map (SOM) in comparison to basic k-means in this context based
on our methodology.

To the best of our knowledge, this paper suggests the first activity and pro-
cess discovery technique for unlabelled sensor event data using SOM as model
and addressing the challenges of concurrent behaviour between activities and
multiple residents.

The remainder of this paper is structured as follows. The next section presents
related work. Subsequently, section Section 3 presents our approach, which has
been evaluated using a real-life data-set. The evaluation is summarised in Sec-
tion 4. The paper concludes with an outlook on future work in Section 5.

2 Related Work

A large body of research exists that partially addresses the discovery of events
and activities at different levels (see Fig. 1). In the following we consider related
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approaches that use sensor data aiming to translate it into higher-level, discrete
event data or applying process mining on raw sensor data. Our focus of related
approaches also lays in smart homes as we used position data of smart home
sensors for evaluation.

Activity recognition in smart home has been widely addressed relying the
recognition on different sensor types like motion or video [3–5] or analysing
data from wearables [6,7] or reference sensors [8]. Recently, Deep Learning (DL)
methods for detecting and predicting activities in IoT environments have been
increasingly explored [9]. Unlike classical machine learning techniques, DL net-
works automatically derive features from the data and produce promising results
in different domains. Particularly in the field of smart homes or ambient as-
sisted living, there are first approaches that recognise activities based on sensor
event data [10–13]. Activity recognition is predominantly used for a situational
prognosis [14]. Also these kinds of approaches identify simple activities [15, 16].
Complex activities like people’s daily activities can only be identified using ex-
tra sensors [15,17]. Although our method for process model discovery from raw
location sensor data also requires a manual labelling of clusters of high-level
events, we believe that the process model view on raw sensor data advances
existing approaches and is beneficial in terms of evaluating the quality of data
aggregations, which DL-based approaches are not capable of.

Mapping low-level events to activities for process mining is still a chal-
lenge [18]. The current status-quo is that approaches indicate only likelihoods of
mappings, since there is often more than one possible solution [19]. Our approach
for event aggregation in combination with unsupervised learning aims to bridge
this gap. Related literature for activity discovery for process mining either use
supervised techniques [6,20] or visualise human habits [21] in order to accurately
identify activities. Some works exist that detect activities from high-level events
through unsupervised techniques [20, 22, 23], which have been compared in this
paper. These related works [20, 22, 23] use patterns or local process models to
aggregate event data towards higher abstraction levels. But they did not allow
to discover meaningful activities for our data set. For unlabelled training sets,
related approaches suggest to use a time-based label refinement [24] or loca-
tions [25] as characteristics in order to segment the event log and to abstract
activities out of it. However, the methods already expects particular representa-
tions of traces. Given our scenario, the application of local process models did
not allow to identify useful process fragments.

3 Translating Sensor Data to High-Level Traces

Our method for process model discovery from raw location sensor data assumes
a location sensor event log EL as input derived from a set of sensors S e.g.,
networks of WiFi-access points, or motion sensors in smart homes. We expect
events e ∈ EL to satisfy some minimal requirements: For each event we can re-
trieve a timestamp time(e) inducing a partial order on the events, a sensor label
sensor(e) ∈ S indicating which sensor was activated and some form of informa-
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Fig. 1: Process discovery approach for location sensor event data.

tion that either implicitly or explicitly refers to a location (i.e., location(e) ∈ L).
The location information can be explicit in the form of coordinates (e.g., latitude,
longitude) or implicit by providing labelled locations together with a distance
function providing pairwise distances between them. Throughout the paper we
assume that EL was generated by one or more entities n ∈ N . An entity may
be a person or an object in the observed area.

Events in a location sensor log do not necessarily have a unique identifier
attached to identify by which entity they were triggered. Often data contains
overlapping and concurrent activities by multiple entities. In smart homes or
factories, multiple entities can be present at the same time. It has to be ensured
that the analysed activities are all associated with the correct entity, to obtain a
meaningful process model on a by-entity-level. Our method targets such scenarios
where a sensor cannot identify entities utilising a unique identifier as it is the
case in WiFi networks, for example.

Figure 1 gives an overview of the proposed approach, which consists of the
following four steps that are explained in the following sections:

1. Event Correlation: Correlation of events from a location sensor event log EL

to (unlabelled) activity instances yielding an instance log EI .

2. Activity Discovery : Discovery of process activities A together with their la-
bels and sensor-level process models describing the expected behaviour on a
sensor level.

3. Event Abstraction: Abstraction of the instance log EI to a process event log
EP where events are directly related to the start or completion of process
activities A.

4. Process Discovery : Process discovery based on the process event log EP

resulting in an activity-level process model defined over activities A.
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3.1 Event Correlation

The first step towards process mining on raw sensor events is to group the
input data according to a set of numbered activity instances by correlating each
individual location sensor event e ∈ EL to an activity instance i ∈ N. This
results in an instance log EI in which, beyond the requirements for EL, each
event ei ∈ EI is additionally assigned an activity instance that can be retrieved
with instance(e) ∈ N. The main goal of this step is to produce traces such
that each trace can be associated with an activity instance. We assume every
recorded event in the raw data is caused by an entity. In order to determine
which entity n ∈ N caused which event, the raw event location data is assigned
to the respective entities. Eventually the trace of each entity is divided into
smaller sub-traces (cases) that contain only one single activity: we denote this
as sensor case slicing. Here, also an approach for entity detection is required.

Entity detection. In a setting with sensors providing only information whether
an object is present or absent, a distinction between entities is not possible. How-
ever, if we know the relative location of the sensors to each other, our weighted
average distance approach can be implemented and distinguish between multi-
ple entities. The very first time any of the sensors detects the presence of an
entity is the beginning of the first entity’s trace. For every subsequent sensor ac-
tivation, we have to decide which entity caused the activation of a sensor. Each
time a sensor is activated, we calculate which already registered entity is closest
to the current sensor activation, based on the entities’ last known position. If
no entity is close enough, the algorithm assumes that a new entity has entered
the observed area and creates a new trace for this new entity. Both the proxim-
ity threshold and the maximum number of entities are parameters that can be
manually adjusted based on the scenario. This straightforward implementation
works well if entities always keep a certain distance to others. But as soon as
various entities cross paths in a spot that is only covered by a single sensor, this
method will not be able to correctly assign the sensor activations after the enti-
ties moved on, since the newly activated sensor has the same distance to every
entity in that single spot. This limitation can be overcome, by assuming, entities
will preserve their direction of motion and predict where entities are headed by
also considering the entities’ previous locations combined with a decay function
in the distance function.

Sensor case slicing. During its presence in the observed area, the entity exe-
cutes most likely more than a single activity. To identify meaningful activities
from the continuous recording (what is called a ”long trace”), an appropriate
separation into smaller sub-traces, called cases, is required. We have to divide
the traces here, because we are identifying and clustering activities by their
sensor-activation-signature, therefore the sub-traces can only contain one single
activity.

In concrete terms, in our approach, a long trace is cut into sub-traces of a
predefined fixed length. Depending on the application, the optimal fixed length
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might be different. Our implementation incorporates a grid search, comparing
the results for different sub-trace lengths, to maintain flexibility. The challenge
is to avoid sub-traces that are too short and contain too little sensor-data to
extract meaningful activities. But at the same time, the sub-traces cannot be
too long, as a too-long sub-trace may consist of multiple activities.

3.2 Activity Discovery

Having obtained the instance log ES , we aim to infer a set of process activities A
that are likely to have generated the raw sensor events. The outputs of this step
in our approach are a set of activities A. Each activity a ∈ A has both an activity
label label(a) as well as a process model describing the low-level behaviour of
that activity a in terms of events on the sensor-level. The main challenge in this
part of the approach is to determine a good division of activity instances into
clusters, i.e., an activity clustering where each of the clusters should represent a
distinct activity on the process level. This refers not only to the clustering itself
but also to finding a good number of clusters. Furthermore, a suitable activity
labelling needs to be found.

Activity clustering. Independent of the implemented clustering technique, the
objective remains the same: Find similar sub-traces and group them. For this,
we used a Self-Organising Map (SOM) clustering and k-means. The challenge
with the discovery of similarities is to find a criterion to define the similarity
between sub-traces. Usually, in SOM this is achieved by calculating the eu-
clidean distance between vectors. However, this is challenging if sensors have
arbitrary label names. We experimented with three alternative representations
of the traces: First, we counted how often each sensor is activated in a trace.
Second, we counted for how long each sensor is activated for in a trace. And
third, we combined both the quantity method and time method in one vector.
The third representation retains the most information of the original trace and
is, therefore, the preferred choice.

Activity labelling and Validation. Having discovered clusters of similar traces
corresponding to distinct activities, we still lack insights into the kind of activity
that may be represented by each cluster. Also, it may be challenging to judge
the quality of the obtained clustering. We assume that activity labelling gener-
ally requires a human-in-the-loop with appropriate domain knowledge. Thus, we
propose to discover a process model based on the events of each cluster by using,
e.g., Inductive Miner. Then, the quality of the process model is evaluated based
on the F1-score combination of the common fitness and precision measure. The
core idea is that these interpretable process models make our method suitable
for complex processes and the quality measure can be used to validate the clus-
tering result. Having access to the process models and their quality evaluation a
domain expert can interpret, validate and label each cluster with an appropriate
activity label a ∈ A.
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3.3 Event Abstraction

The third step of our approach combines the sub-traces yielded by the event
correlation step (Section 3.1) and the activity clusters detected in the Activ-
ity Discovery step (Section 3.2). This results in a process event log EP that
groups together events from the original location sensor event log EL to process
events ep ∈ EP . For each process event ep we can obtain the following at-
tributes: time(eP ) ∈ N, activity(eP ) ∈ A, entity(eP ) ∈ T , and transition(eP ) ∈
{start, completed}. Thus, each process event refers to a specific high-level pro-
cess activity and indicates a transition in the transactional life-cycle, i.e., whether
the activity instance has been started or completed.

3.4 Process Discovery

Having promoted the raw location sensor events EL to the level of activity
instances, our process event log EP fulfils almost all requirements for high-level
process discovery. Anyway, still missing are process cases that are meaningful to
our analysis goal. Identifying process cases is highly dependent on the particular
circumstance. In our application scenario, we propose to focus on re-occurring
behaviour of an entity starting with a specific activity (e.g., entering the smart
home). Based on our event correlation step (Section 3.1), we build a separate
trace for each entity. Then, the potentially very long trace referring to a single
entity is subdivided into multiple traces by dividing it into separate traces each
time the activity of interest occurs. To discover a meaningful process model, we
have to assume that regular and routine behaviour is observable. As a starting
point, an activity has to be selected that most likely will be the origin of the
routine behaviour such as entering the observed area. Finally, an overall process
model is discovered using a standard technique, e.g., Inductive Miner [26]. The
final output is a process model reflecting the observed behaviour of the entities
aggregated only from raw sensor data.

4 Evaluation

4.1 Set-up

We evaluated our approach on the publicly available CASAS data-set, which
contains raw sensor data from a smart home environment [2]. The CASAS data
fulfils the two requirements of our approach: it contains the timestamps and
location information of sensor events. The data was recorded in a smart home
test-bed with two residents and a house equipped with 51 motion sensors. Fig-
ure 2 shows the house plan and the positions of the motion sensors. Each mo-
tion sensor generates low-level events, where each sensor entry is tagged with
a timestamp, the sensor ID and the binary sensor value (active / not active).
We extracted sensor data from 7 consecutive days (02/05–09/02/2010) from the
20-Kyoto-2-Daily life, 2010-2012 data set.
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Fig. 2: Sensor layout of an apartment in the CASAS project [2].

We applied our method for different values of parameters such as sub-trace
length, number of clusters and the similarity measure used. We used grid search
to identify best parameter values for the clustering based on the average com-
bined fitness [27] and precision [28] (F1-score) obtained for the process models
discovered for each cluster of high-level events. We employ standard filtering
techniques (most frequent traces and activities) used in process mining to focus
on the dominant behaviour in each cluster. We compared the proposed SOM
clustering with k-means clustering based on the same similarity measures. The
implementation of step 1 and 2 is openly accessible 6 We used PM4Py 1.1.1 and
heuristicmineR for the process discovery and evaluation.

Having discovered activities and obtained traces based on the idea to discover
re-occurring behaviour starting with the same activity (Section 3.4), we applied
Heuristics Miner to discover a process model of the behaviour. Based on the
spatial layout of the smart home (Figure 2), we choose to create traces that
start with the activity Walk entrance/stairs/storage as the entry point into the
house. Heuristics Miner was selected as we expect the inhabitants of the smart
home environment to show a lot of infrequent behaviour, for which Heuristics
Miner has shown to be appropriate [29].

4.2 Results & Discussion

Figure 3 shows the results of our grid search. We experimented with trace lengths
ranging from four to twelve. Shorter trace lengths generally lead to a better F1-
score. However, we need to impose a minimal trace length since traces consisting
only of a single event would trivially lead to the discovery of process models with
perfect fitness and precision. In our case, less than four events did not allow to
infer a set of meaningful activities.

Evaluating sample data has shown that considering both the frequency of
activation as well as the duration of the activations as a similarity measure (the

6 https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public.

https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public
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Fig. 3: Average F1-score for process models discovered for the clusters based on
six different cluster sizes (6-16), five different maximum trace lengths (4-12),
four vector preparation methods and two clustering algorithms.

Fig. 4: Example of a Petri net discovered using Inductive Miner for a cluster in
the Activity Discovery step.

method quantity time) yields superior results, compared to only regarding one
aspect. When choosing too few clusters or too many, the quality score decreases.
In turn, choosing too many clusters may lead to several clusters representing the
same activities, which should have been grouped. We also qualitatively evaluated
the clustering by manually inspecting and labelling some of the results.

For example, the Petri net discovered by Inductive Miner on a cluster shown
in Figure 4 is a reasonable candidate. The three sensors that can be activated
simultaneously are all located in the bathroom. The subsequent sensors M29 and
M28 are located in the hall with M28, which is furthest from the bathroom. From
this example process model, it is reasonable to infer that this cluster refers to
activities where the entity spends some time in the bathroom and then left the
room. Overall, the similar results are obtained for 10 and 16 clusters with a trace
length of 4 and using our proposed quantity&time vectorisation approach.

We grouped the activity instances of the best clustering results (16 clusters)
into traces at the level of process instances. Afterwards we filtered the resulting
event log to only retain traces of a length in the range of 5 to 25 events. This
yields a log with 5898 events grouped in 273 traces with an average length of
21.6. The application of Heuristics Miner with a dependency threshold of 0.8
and a frequency threshold of 10 returns the Causal net dependencies shown in
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Figure 5. The activity in entrance area of the house marks the starting point
of our Causal net. The activities that can mostly be observed after the entry
activity are walking between the rooms, walking in the upper hallways and going
to the kitchen to cook or wash the dishes. After cooking the dishes it often occurs
that the resident would walk between the rooms to sit down, presumably to eat
in the living room.

4.3 Limitations

A drawback of our method is the assumption of continuous movement in the
event correlation step (Section 3.1). As soon as the motion at the rendezvous
location is more than just a mere passing by, our approach might not return
the desired results. Additionally, the entity recognition could be improved by
using more sophisticated methods, e.g. hidden Markov models that have already
shown promising results in differentiating people from one another [30]. More-
over, the sensor case slicing mechanism could take variable sub-trace length into
consideration, i.e., depending on the activity, the number of involved events,
and therefore the sub-trace length may vary. For example, the activities sleep-
ing, cooking and washing hands are activities with a distinctive difference in the
number of involved events.

5 Conclusion

IoT environments generate a large amount of data, predestined for further analy-
sis. Process mining can give valuable insights into how real-life activities perform
when extracting meaningful activities instances from raw sensor events. This pa-
per combined unsupervised learning in the form of clustering and process mining,
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to discover activities and process models from motion sensors. We evaluated our
approach by comparing the obtained model quality for several clustering tech-
niques on a publicly available data-set in a smart home scenario and found it to
be superior. To fully relieve domain experts from process modelling and to au-
tomate the process of model discovery, we believe that an accurate approach for
entity centricity is imperative. For this, future tasks are to fuse heterogeneous
sensor events as input for high-level aggregation, to take into account other
vectorisation methods such the shortest path distance between sensors (i.e., re-
lational or pair-wise distances only) to better disambiguate between residents
and to apply non-end-to-end process discovery methods such as Local Process
Model discovery [22]. In further research, we plan to include spatial information,
like room layouts in smart homes, into our approach as well as implement vari-
able trace lengths and experiment with other machine-based learning techniques
to further improve the discovered process models.
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