
A Generic Framework for Attribute-Driven
Hierarchical Trace Clustering

Sebastiaan J. van Zelst1,2 and Yukun Cao2

1 Fraunhofer Institute for Applied Information Technology (FIT),
Sankt Augustin, Germany

sebastiaan.van.zelst@fit.fraunhofer.de
2 Chair of Process and Data Science, RWTH Aachen University,

Aachen, Germany

Abstract. The execution of business processes often entails a specific
process execution context, e.g. a customer, service or product. Often,
the corresponding event data logs indicators of such an execution con-
text, e.g., a customer type (bronze, silver, gold or platinum). Typically,
variations in the execution of a process exist for the different execution
context of a process. To gain a better understanding of the global pro-
cess execution, it is interesting to study the behavioral (dis)similarity
between different execution contexts of a process. However, in real busi-
ness settings, the exact number of execution contexts might be too large
to analyze manually. At the same time, current trace clustering tech-
niques do not take process type information into account, i.e., they are
solely behaviorally driven. Hence, in this paper, we present a hierarchical
data-attribute-driven trace clustering framework that allows us to com-
pare the behavior of different groups of traces. Our evaluation shows that
the incorporation of data-attributes in trace clustering yields interesting
novel process insights.

Keywords: Process mining · Trace clustering · Process comparison.

1 Introduction

Modern information systems employed at companies track the execution of busi-
ness processes in great detail. The activities executed in the context of a business
process, i.e., events, are stored in event logs. Automated analysis of event logs
allows one to get a better understanding of the process based on what happened
in reality (as recorded in the information system). In the field of process min-
ing [1], several techniques have been developed that provide such automated
analyses, e.g., methods exist that automatically construct a process model that
describes the process as captured by the event data [2].

Ideally, process mining techniques allow us to get instant insights into the
execution of a process, based on an event log. However, the direct application
of an automated process discovery algorithm on a real event log often leads to
a complex process model which is hard or even impossible to comprehend. This

2 van Zelst and Cao

is typically caused by incorrect logging of events and low-frequent executions
of the process that severely deviate from the process’ main flow. Some authors
have proposed methods to preprocessing/filter event data [10, 16–18], however,
even properly filtered data often yields imprecise and complex process models. In
some cases, this is because a company executes the process slightly different for
the different process execution contexts of its end product and/or service. Even if
the differences between the process execution are subtle, e.g., just swapping two
activities, state-of-the-art process discovery algorithms tend to discover process
models of inferior quality.

Process execution contexts are omnipresent, yet, little to no work focuses on
providing end-to-end solutions to exploit event data describing execution con-
texts. To some degree, e.g., when a company distinguishes between 4 different
customer types, manually slicing the data into relevant subsets and subsequently
analyzing/comparing the corresponding process models is feasible. However, of-
ten, the number of process categories is too large to perform such an analysis
manually. For example, consider the WABO/CoSeLoG event data [8], which
describes different sub-logs capturing how five Dutch municipalities handle the
application of building permits. In its current form, a comparative study is still
feasible, however, in case one collects data of the same process among all Dutch
municipalities (>300), such a manual analysis is no longer feasible.

Therefore, in this paper, we propose a framework that allows for attribute-
driven hierarchical clustering of traces. Given a user-defined case attribute, we
construct a hierarchical clustering of the given event data, grouping the most
similar executions of the process. As such, the framework allows the user to
inspect collections of similar process executions belonging to different process
contexts. The clusters allow us to group different process contexts that have
a similar process execution. Furthermore, the clusters allow us to improve the
overall process performance of specific process execution contexts based on sim-
ilar process contexts. The accompanying implementation, built on top of the
PM4Py framework [4], allows the user to compare different groups in the hier-
archy. Using the implementation, we conducted a set of large-scale experiments
based on publicly available real event data sets. Our experiments consistently
show that the models found based on attribute-driven event logs are of superior
quality compared to the models discovered by process discovery algorithms when
directly applied on the original event data.

The remainder of this paper is structured as follows. In Section 2, we present
background concepts. In Section 3, we present the proposed framework. In Sec-
tion 4, we present the results of the evaluation conducted in the context of this
paper. In Section 5, we discuss related work. Section 6, concludes this work.

2 Background

In this section, we conceptually present event logs and hierarchical clustering.

Event Logs Event logs are the primary source of data for almost any process
mining analysis. An event log captures at which point in time an activity was ex-

A Generic Framework for Attribute-Driven Hierarchical Trace Clustering 3

Table 1: Example event log (a), adopted from [1], describing a compensation re-
quest process for concert tickets and (b) an exemplary mapping of case identifiers
to data attributes, i.e., each case id has an associated ticket class.

(a)

Case id Event id Activity Timestamp Resource · · ·
...

...
...

...
... · · ·

1273 4632 register request 12-11-2019 11.02 Barbara · · ·
1274 4633 register request 12-11-2019 11.32 Jan · · ·
1273 4634 check ticket 12-11-2019 12.12 Stefanie · · ·
1274 4635 examine casually 12-11-2019 14.16 Jorge · · ·
1275 4636 register request 12-11-2019 14.32 Josep · · ·
1275 4637 examine thoroughly 12-11-2019 15.42 Marlon · · ·
1273 4638 examine thoroughly 13-11-2019 11.18 Barbara · · ·
1273 4639 decide 13-11-2019 15.34 Wil · · ·
1273 4640 reject request 13-11-2019 16.50 Arthur · · ·
...

...
...

...
... · · ·

(b)

Case id Ticket type

...
...

1273 VIP
1274 Basic
1275 Basic
1276 Plus
1277 Royal
...

...

ecuted in the context of an instance of a process. Consider Table 1a, in which we
present a simplified example of an event log. The first column depicts the Case
identifier, i.e., identifying a specific instance of a process, e.g., a concert ticket.
The Activity column registers what activity was performed for the correspond-
ing case. The Timestamp column registers at what time the activity occurred.
Observe that other data attributes, related to the activities, are available in an
event log as well, e.g., the Resource and Cost columns in Table 1a.

For each process instance, multiple activities are logged over time, e.g., for
the process instance with case-id 1273 we observe the sequence 〈register request,
check ticket, ..., reject request〉. The execution of an activity in the context of a
process instance is referred to as an event (identified by the Event id column).
Observe that events carry auxiliary data payload, e.g., the Resource column.
Typically, process instances (identified by the case identifier) also carry data
attributes. Consider Table 1b, in which we depict an example of such a case at-
tribute, corresponding to the event log in Table 1a, i.e., where each compensation
request (Case id) is related to a ticket class. In general, different case attributes
may exist, e.g., in what country/factory a product is produced, the ticket price,
etc. Typically, a business owner is interested in assessing or comparing the exe-
cution of the process along the lines of such data attributes, e.g., in which branch
of the company is the process executed most efficiently?

In the context of this paper, we assume an event log L⊆C to be a collection
of cases (C denotes the universe of cases). Furthermore, given some c∈C data
attribute of interest d∈D (D denotes the universe of data attributes), we assume
that we are able to retrieve the value of attribute d by means of πd(c). In par-
ticular, for trace∈D, we assume that πtrace(c)∈A∗ (where A∗ denote the set of
all sequences over the activity universe A). Finally, we let D̂ = D\{trace} and
we overload the notation for attribute projection (π) to sets of cases, i.e., given
L⊆C, we have πd(L)= {πd(c) | c∈L}.

4 van Zelst and Cao

Fig. 1: Overview of the proposed framework. The event log is partitioned based
on a user-defined data attribute d∈D, i.e., by means of partition function ϕ.
The corresponding resulting event logs, i.e., Lv1 , Lv2 , ..., Lvn , are combined into
a hierarchical clustering based on the behavior they describe.

Hierarchical Clustering The framework proposed in this paper builds a hierar-
chical clustering of cases. A detailed description of hierarchical clustering is out
of scope, i.e., we refer to [27] for an elaborate overview. Informally, a hierarchical
clustering of a set of (sets of) elements defines a hierarchy of clusters based on
these aforementioned (sets of) elements. Mathematically, a hierarchical cluster-
ing is a binary tree of some height h. The bottom layer of the hierarchy, i.e.,
the nodes at height 0, is defined by the individual elements of the set (or an
initial clustering). The top layer of the hierarchy, i.e., the root at height h, is
the complete set of elements. A cluster Ci at height 0<i<h connects to, i.e., is a
super-set of, at least one cluster Ci−1 at height i− 1 and a cluster Cj at height
0≤j<i. Given a distance measure on the clusters, a cluster combining two other
clusters implies that the distance among these two clusters is minimal.

3 Attribute-Driven Hierarchical Trace Clustering

Consider Fig. 1, in which we depict a schematic overview of the proposed frame-
work for data-driven hierarchical clustering. Given attribute d∈D and event log
L⊆C, we partition the cases in the event log (using partition function ϕ). The
partitioning groups cases together that have the same value for data attribute
d∈D. Hence, given that |πd(L)|=n, the partitioning function ϕ yields n sub-logs
(Lv1 , ..., Lvn in Fig. 1) that form a partition of the original event log. By def-
inition, |πd(L′)|=1, ∀L′∈ϕ(L, d), i.e., each sub-log defined by the partition is
uniquely associated to one value v∈πd(L).

Given the initial partitioning as defined by ϕ(L, d), we construct a hierarchi-
cal clustering, using the initial partitioning as a primary input, i.e., the hierar-
chy’s nodes at height 0. To construct a hierarchy of clusters, we require a distance
function, i.e., a linkage criterion, that allows us to compute the distance between
the hierarchy clusters, i.e., the sub-logs. Formally, we require a linkage criterion
of the form ∆ : P(C)×P(C)→R≥0. However, we are primarily interested in the

A Generic Framework for Attribute-Driven Hierarchical Trace Clustering 5

(a) Trace-based linkage criterion compu-
tation; Cluster distances are aggregations
of the inter-trace distance of the elements
of the different clusters.

(b) Abstraction-based linkage criterion
computation; Inter-cluster distance is
computed in terms of a distance based
on abstractions of the cluster.

Fig. 2: Overview of the two different ways to compute linkage criteria considered.

linkage criterion in terms of the control-flow behavior of the cases, i.e., in terms
of πtrace(c)∈A∗. Using πtrace(c)∈A∗, ∀c∈C, we consider two forms of linkage cri-
terion computation, i.e., trace-based linkage computation and abstraction-based
linkage computation. Consider Fig. 2, in which we schematically depict the two
different linkage computation strategies.

In trace-based linkage computation, the linkage criterion ∆ is computed by
means of computing some aggregate over a trace-based distance function δ : A∗×
A∗→R≥0. Observe that a wide variety of such aggregates exists, e.g., maximal
linkage clustering with, given X,Y⊆C, ∆(X,Y)= max{∆(πtrace(c), πtrace(c

′))|
c∈X, c′∈Y }, etc. In abstraction-based linkage computation, we compute an ab-
straction of the behavior described by the collection of cases, which we subse-
quently use to compute the distance measure, e.g., by first translating the traces
of each cluster into a prefix-tree and computing a distance function over the
corresponding prefix trees.

4 Evaluation

Here, we evaluate the application of the framework. In Section 4.1, we present
the implementation. In Section 4.2, we present the results of the evaluation.

4.1 Implementation

The proposed framework is implemented on top of the PM4Py [4] process mining
library and is publicly available.1 In the prototype (Fig. 3), the user can select
which attribute to use as a main driver for the initial partitioning. In the left-
hand side of the application, the hierarchical clustering is shown. The user can

1 https://github.com/caoyukun0430/pm4py-source/tree/yukun paper and https://
github.com/caoyukun0430/pm4py-ws/tree/dev-yukun

https://github.com/caoyukun0430/pm4py-source/tree/yukun_paper
https://github.com/caoyukun0430/pm4py-ws/tree/dev-yukun
https://github.com/caoyukun0430/pm4py-ws/tree/dev-yukun

6 van Zelst and Cao

Fig. 3: Screenshot of an interactive prototype of the clustering framework.

select different nodes of the clustering, to inspect the corresponding discovered
process model, i.e., based on the event data belonging to the cluster. Different
distance/linkage functions can be selected from the right-hand-side menu.

We used the implementation to conduct our experiments. In the implementa-
tion, several instantiations of the required distance/linkage functions, i.e., inter-
trace distance function δ, linkage criteria and abstraction-based distances are
available. We briefly describe these instantiations here.

Inter-Case Distance Metrics Two different inter-case measures, i.e., instantia-
tions of the δ-function, are available, i.e., Levenshtein distance and Behavioral-
Trace Distance:

– Levenshtein distance [24](δL); Expresses the amount of edits (insertion, re-
moval or replacements) we need, in order to transform a given sequence
σ into another sequence σ′. The Levenshtein distance between 〈a, b, c〉 and
itself is 0, whereas the Levenshtein distance between 〈a, b, c〉 and 〈a, c〉 is 1.

– Behavioral-Trace Distance (δαB); Transforms two given traces into behav-
ioral abstraction vectors, on which we compute a vector based distance. We
consider two different behavioral vectors:
• Activity occurrence abstraction, i.e., given σ∈A∗, we define a vector
~σa∈NA, where ~σa(a)=| {i∈{1, ..., |σ|} | σ(i)=a} |.
• Subsequent relation occurrence abstraction, i.e., given σ∈A∗, we define a

vector ~σs∈NA×A, where ~σs(a, a
′)=|{i∈{1, ..., |σ|−1} | σ(i)=a∧σ(i+1)=

a′}|.
Given the two aforementioned abstractions, and, parameter α∈[0, 1]⊆R, we
define the behaviorally driven inter-trace distance function as:

δαB(σ, σ′)=α

(
1− ~σa·~σ′a
||~σa|| ||~σ′a||

)
+ (1− α)

(
1− ~σs·~σ′s
||~σs|| ||~σ′s||

)
(1)

Trace-Based Linkage Criteria Next to the two trace-based distance metrics, we
implemented two trace-based linkage criteria, i.e., unweighted average linkage
clustering (UPGMA) and dual minimal match linkage criterion (DMM):

A Generic Framework for Attribute-Driven Hierarchical Trace Clustering 7

– Unweighted Average Linkage Clustering (UPGMA); Given two clusters of
cases, i.e., L,L′⊆C, we compute:

1

|L| |L′|
∑
c∈L

∑
c′∈L′

δ (πtrace(c), πtrace(c
′)) (2)

– Dual Minimal Match (DMM); Given two clusters of cases, i.e., L,L′⊆C, we
compute:

1

|L|+|L′|

 ∑
c∈L

min
{
δ
(
πtrace(c), πtrace(c

′
)
)

| c′∈L′}
+

∑
c′∈L′

min
{
δ
(
πtrace(c), πtrace(c

′
)
)

| c∈L
}
(3)

Abstraction-Based Linkage Criteria In the implementation, we consider the same
abstraction as used in the inter-trace behavioral distance metric, i.e., behavioral
abstraction vectors capturing activity occurrence and subsequent relations. How-
ever, we first aggregate the behavioral relations, i.e., based on the members of a
cluster, prior to computing the behavioral vectors. or convenience, we formalize
the two abstractions on the cluster-level.2

– Activity occurrence abstraction, i.e., given C∈P(A∗), we define a vector
~Ca∈NA, where ~Ca(a)=

∑
σ∈C
| {i∈{1, ..., |σ|} | σ(i)=a} |.

– Subsequent relation occurrence abstraction, i.e., given C∈P(A∗), we define a

vector ~Cs∈NA×A, where ~Cs(a, a
′)=

∑
σ∈C
|{i∈{1, ..., |σ| − 1} | σ(i)=a∧σ(i+ 1)

=a′}|.

Given the cluster vectors, we are able to compute the linkage criterion using the
weighted cosine similarity-based distance metric, presented in Equation 1.

In total, we consider 5 different instantiations of the framework, i.e., trace-
based instantiations δL-UPGMA, δL-DMM, δαB-UPGMA and δαB-DMM and the
vector-based abstraction-based linkage V-ABL.

4.2 Results

Here, we present the results of the evaluation of applying attribute-driven hi-
erarchical clustering. We briefly present qualitative results on real event data,
after which we quantitatively assess the approach on several real event logs.

Qualitative Evaluation on Real Event Data In this section, we present the
qualitative clustering results of our framework applied to real event data. We
use the Business Process Intelligence Challenge (BPIC) 2017 Offer [14] event
data, which describes all the offers made for a loan application processes. We
select the CreditScore attribute containing 520 different values, ranging from 0
to 1145, since we are interested in discovering typical application behaviors on
customers under different credit scores.
2 We formalize the abstractions on sets of sequences over A, rather than elements c∈C.

Note that, given c∈C, we are able to access the trace-view by means of πtrace(c).

8 van Zelst and Cao

Fig. 4: Truncated dendrogram at the top three hierarchy levels with the corre-
sponding discovered process models ((BPIC) 2017 Offer [14] event data).

As depicted in Fig. 4, the algorithm separates the data into clusters with a
zero (0) and a non-zero (6=0) Score value. Corresponding event log sizes are 27735
and 15260 respectively. The underlying discovered models are relatively similar
(depicted on the right-hand side of Fig. 4), i.e., for Score values equal to 0, more
skipping of activities is allowed. When we dive deeper into the data, we observe
that the O Cancelled and the O Refused activity dominate the sub-log under
the zero value (total occurrence 80.35%). At the same time, the O Accepted
activity dominates the traces under non-zero values (94.38%). This difference
leads to the vast behavioral inter-cluster distances and explains the clustering
found. In particular, this matches the expectation that people without a credit
score get rejected more often when applying for loans in reality. As we traverse
the hierarchy further, we observe one outlier cluster containing only four cases
with credit scores “541, 608, 625, 634”, in which only the single behavior O Sent
(online only) is allowed. Compared to this behavioral cluster, the remaining
cluster excluding these four values shows a large variety of behavior. Therefore,
the clustering dendrogram in Fig. 4 provides us a clear understanding of different
customer behaviors under different credit scores as well as extracting outlier
behavior from the complete model.

Quantitative Evaluation on Real Event Data In this section, we show
the results of applying our implementation on a variety of different publicly
available event logs. We first assess the impact of the different distance metrics
and linkage criteria based on the “Receipt phase of an environmental permit
application process (‘WABO’), CoSeLoG project” event log (“Receipt log”) [7].
Additionally, we assess how the technique performs on several different publicly
available event logs.

In Fig. 5, we present average F1-, replay-fitness- and precision scores, ob-
tained for the models discovered based on the Receipt log, for the five dif-
ferent implemented distance metrics and linkage criteria. Replay-fitness (range
[0, 1]⊆R) indicates how well a model describes a given event log (value 1 implies
that the model describes all behavior in the event log). Precision (range [0, 1]⊆R)
quantifies the amount of additional behavior described by the model (value 1

A Generic Framework for Attribute-Driven Hierarchical Trace Clustering 9

(a) F1 Score (b) Replay-Fitness Score (c) Precision Score

Fig. 5: Average F1, replay-fitness and precision scores obtained for the models
discovered based on the Receipt log [7], for the different distance metrics and
linkage criteria as described in this paper.

implies that all described behavior is part of the input event log). The F1 score
is the harmonic mean of replay-fitness and precision. We used the responsible

attribute as a basis for the hierarchy, and, for abstraction based linkage, we use
α= 1

2 . The x-axis of the charts describes the number of separate clusters in the
hierarchy, i.e., starting in the root of the hierarchy and traversing down. We ob-
serve an increase in the F1 score, which gradually decreases, yet, remains above
the F1 score obtained for the model discovered based on the whole event log
(the hierarchy’s root). When going deeper into the hierarchy, the increase in the
F1 score is explained by a higher increase in precision when compared to the
corresponding decrease in replay-fitness. However, when traversing the hierarchy
further, surprisingly, the replay-fitness slightly increases whereas the precision
slightly drops. Upon inspection of the results, we observe that the higher levels
of the hierarchy contain outlier clusters that have a relatively high correspond-
ing precision value and relatively low replay-fitness value. However, deeper in
the hierarchy, more similar clusters are “split-up” into the lower levels of the
hierarchy. In some cases, the newly added fitness values in a deeper level in
the hierarchy are higher than the average fitness values of the current level of
the hierarchy, leading to a higher average fitness value in the next layer. The
same holds, symmetrically, for the corresponding precision values, explaining the
results in Fig. 5.

In Fig. 6, we present the results F1, replay-fitness and precision scores ob-
tained for the models discovered based on different publicly available event logs,
using V-ABL. Observe that, in the plots provided here, we only plot the highest
23 levels of the hierarchy (in most cases the hierarchies tend to be higher). The
event logs considered are BPIC 2012 [13], three different sub-logs (Control, Geo
and Payment) of BPIC 2018 [15] and the Receipt log (also used in the previous
section). Selection of the trace attributes is based on manual inspection of the
results. We observe similar results on the different logs, i.e., slight increases of
the F1 scores due to increases in precision and smaller decrease (and stabiliz-
ing) fitness values. Again, stabilization of the fitness values is due to the initial
identification of outlier clusters.

10 van Zelst and Cao

(a) F1 Score (b) Replay-Fitness Score (c) Precision Score

Fig. 6: Average F1, replay-fitness and precision scores obtained for the models
discovered based on different publicly available event logs, based on abstraction-
based linkage criterion. In all cases, we observe a slight increase in the F1 score,
primarily driven by increases in precision.

5 Related Work

An overview of the field of process mining is out of the scope of this paper, i.e.,
we refer to [1] for an introduction to the field. In the remainder, we explicitly
focus on related work in the area of trace clustering. In particular, we briefly
provide a generalized overview of different existing clustering techniques, i.e.,
in general, the majority of the different clustering techniques proposed can be
integrated into the framework presented in this paper.

Several authors focus on trace clustering based on a feature vector based
distance [3, 6, 11, 12, 20, 22, 23, 25, 26, 28, 29]. These techniques consider different
ways to extract specific features from the activity traces, which are subsequently
translated into a feature vector. Examples of such features are event frequency,
direct succession frequency, etc. For a given feature vector, different linkage
criteria and clustering algorithms can be used to compute the final clustering.
Alternatively the syntactic distance between traces, e.g., Levensthein, is used [5].
Another commonly used type of clustering focuses directly on models, rather
than individual traces [9,11,19,21,25,30,31]. The goal of these methods here is
to obtain a better model (i.e., higher precision, fitness) by merging traces into
clusters. Typically traces are added into a cluster if they improve the quality of
the cluster-based process model.

6 Conclusion

Processes executed in companies, hospitals, etc. are often performed in the con-
text of an execution context, e.g., a customer type. Often, slight variations exist
in the execution of the process for the different execution contexts. Manual com-
parison of the differences in execution, based on event data stored in event logs,
is no longer feasible for more significant numbers of execution contexts. Hence, in
this paper, we presented a hierarchical trace clustering framework that allows us
to perform behavioral trace clustering over groups of traces, that share common

A Generic Framework for Attribute-Driven Hierarchical Trace Clustering 11

data attributes. We evaluated the approach using several real data sets, based on
several different behavioral comparison techniques. Our evaluation shows that
the models described by the different clusters of the hierarchy are of better
quality compared to the models discovered on the event data as a whole.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

3. Bae, J., Caverlee, J., Liu, L., Yan, H.: Process mining by measuring process block
similarity. In: International Conference on Business Process Management. pp. 141–
152. Springer (2006)

4. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python
(PM4Py): Bridging the gap between process-and data science. In: Proceedings
of the ICPM Demo Track 2019, co-located with 1st International Conference on
Process Mining (ICPM 2019), Aachen, Germany, June 24-26, 2019. p. 13–16 (2019)

5. Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: Towards im-
proving process mining results. In: Proceedings of the 2009 SIAM International
Conference on Data Mining. pp. 401–412. SIAM (2009)

6. Bose, R.J.C., van der Aalst, W.M.: Trace clustering based on conserved patterns:
Towards achieving better process models. In: International Conference on Business
Process Management. pp. 170–181. Springer (2009)

7. Buijs, J.: Receipt phase of an environmental permit application process
(‘wabo’), coselog project (2014). https://doi.org/10.4121/UUID:A07386A5-7BE3-
4367-9535-70BC9E77DBE6

8. Buijs, J.: Environmental permit application process (‘WABO’),
CoSeLoG project. Eindhoven University of Technology. Dataset. (2014).
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

9. Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering
and visualization of navigation patterns on a web site. Data mining and knowledge
discovery 7(4), 399–424 (2003)

10. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314
(2017)

11. De Koninck, P., Nelissen, K., Baesens, B., vanden Broucke, S., Snoeck, M.,
De Weerdt, J.: An approach for incorporating expert knowledge in trace clustering.
In: International Conference on Advanced Information Systems Engineering. pp.
561–576. Springer (2017)

12. De Medeiros, A.K.A., Guzzo, A., Greco, G., Van Der Aalst, W.M., Weijters, A.,
Van Dongen, B.F., Saccà, D.: Process mining based on clustering: A quest for
precision. In: International Conference on Business Process Management. pp. 17–
29. Springer (2007)

13. van Dongen, B.F.: Bpi challenge 2012 (2012).
https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F

14. van Dongen, B.F.: Bpi challenge 2017 (2017).
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B

https://doi.org/10.4121/UUID:A07386A5-7BE3-4367-9535-70BC9E77DBE6
https://doi.org/10.4121/UUID:A07386A5-7BE3-4367-9535-70BC9E77DBE6
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B

12 van Zelst and Cao

15. van Dongen, B.F., Borchert, F.: Bpi challenge 2018 (2018).
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

16. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery
results by filtering outliers using conditional behavioural probabilities. In: Business
Process Management Workshops - BPM 2017 Barcelona, Spain, September 10-11,
2017, Revised Papers. pp. 216–229 (2017)

17. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Applying sequence mining
for outlier detection in process mining. In: CoopIS, C&TC, and ODBASE 2018,
Valletta, Malta, October 22-26, 2018, Proceedings, Part II. pp. 98–116 (2018)

18. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour
in event logs. In: Business Information Systems - 21st International Conference,
BIS 2018, Berlin, Germany, July 18-20, 2018, Proceedings. pp. 115–131 (2018)

19. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining
with sequence clustering: Experiments and findings. In: International Conference
on Business Process Management. pp. 360–374. Springer (2007)

20. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering
18(8), 1010–1027 (2006)

21. Hompes, B., Buijs, J., Van der Aalst, W., Dixit, P., Buurman, J.: Discovering devi-
ating cases and process variants using trace clustering. In: 27th Benelux Conference
on Artificial Intelligence (BNAIC), November. pp. 5–6 (2015)

22. Jung, J.Y., Bae, J.: Workflow clustering method based on process similarity. In:
International Conference on Computational Science and Its Applications. pp. 379–
389. Springer (2006)

23. Jung, J.Y., Bae, J., Liu, L.: Hierarchical clustering of business process models.
International Journal of Innovative Computing, Information and Control 5(12),
1349–4198 (2009)

24. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

25. Lu, X., Tabatabaei, S.A., Hoogendoorn, M., Reijers, H.A.: Trace clustering on very
large event data in healthcare using frequent sequence patterns. In: International
Conference on Business Process Management. pp. 198–215. Springer (2019)

26. Luengo, D., Sepúlveda, M.: Applying clustering in process mining to find different
versions of a business process that changes over time. In: International Conference
on Business Process Management. pp. 153–158. Springer (2011)

27. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview, II.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(6) (2017)

28. Song, M., Günther, C.W., Van der Aalst, W.M.: Trace clustering in process min-
ing. In: International Conference on Business Process Management. pp. 109–120.
Springer (2008)

29. Song, M., Yang, H., Siadat, S.H., Pechenizkiy, M.: A comparative study of dimen-
sionality reduction techniques to enhance trace clustering performances. Expert
Systems with Applications 40(9), 3722–3737 (2013)

30. Sun, Y., Bauer, B.: A novel top-down approach for clustering traces. In: Inter-
national Conference on Advanced Information Systems Engineering. pp. 331–345.
Springer (2015)

31. De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

	A Generic Framework for Attribute-Driven Hierarchical Trace Clustering

