
Computing Alignments of Event Data and
Process Models

Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.j.v.zelst, a.bolt, b.f.v.dongen}@tue.nl

Abstract. The aim of conformance checking is to assess whether a pro-
cess model and event data, recorded in an event log, conform to each
other. In recent years, alignments have proven extremely useful for cal-
culating conformance statistics. Computing optimal alignments is equiv-
alent to solving a shortest path problem on the state space of the syn-
chronous product net of a process model and event data. State-of-the-art
alignment based conformance checking implementations exploit the A∗-
algorithm, a heuristic search method for shortest path problems, and
include a wide range of parameters that likely influence their perfor-
mance. In previous work, we presented a preliminary and exploratory
analysis of the effect of these parameters. This paper extends the afore-
mentioned work by means of large-scale statistically-sound experiments
that describe the effects and trends of these parameters for different
populations of process models. Our results show that, indeed, there ex-
ist parameter configurations that have a significant positive impact on
alignment computation efficiency.

Keywords: Process Mining, Conformance Checking, Alignments

1 Introduction

Most organizations, in a variety of fields such as banking, insurance and health-
care, execute several different (business) processes. Modern information systems
allow us to track, store and retrieve data related to the execution of such pro-
cesses, in the form of event logs. Often, an organization has a global idea, or even
a formal specification, of how the process is supposed to be executed. In other
cases, laws and legislations dictate explicitly in what way a process is ought to
be executed. Hence, it is in the company’s interest to assess to what degree the
execution of their processes is in line with the corresponding specification.

Conformance checking techniques, originating from the field of process min-
ing [3], aim at solving the aforementioned problem. Conformance checking tech-
niques allow us to quantify to what degree the actual execution of a process,
as recorded in an event log, conforms to a corresponding process specification.
Recently, alignments were introduced [4,6], which rapidly developed into the

de-facto standard in conformance checking. The major advantage of alignments
w.r.t. alternative conformance checking techniques, is the fact that deviations
and/or mismatches are quantified in an exact, unambiguous manner.

When computing alignments, we convert a given process model, together
with the behaviour recorded in an event log, into a synchronous product net and
subsequently solve a shortest path problem on its state space. Typically, the well
known A∗ algorithm [8] is used as an underlying solution to the shortest path
problem. However, several (in some cases alignment-specific) parametrization
options are defined and applied on top of the basic A∗ solution.

In previous work [19] we presented a preliminary and exploratory analysis of
the effect of several parameters on the conventional alignment algorithm. In this
paper, we extend the aforementioned work further, by assessing a significantly
larger population of process models. We specifically focus on those parametriza-
tions of the basic approach that, in our previous work, have shown to have a
positive impact on the algorithm’s overall performance. Moreover, we present a
concise algorithmic description of alignment calculation which explicitly includes
these parameters. Our experiments confirm that, indeed, the parameters studied
enable us to increase the overall efficiency of computing alignments.

The remainder of this paper is organized as follows. In Section 2, we present
preliminaries. In Section 3, we present the basic A∗-based alignment algorithm.
In Section 4, we evaluate the proposed parametrization. In Section 5, we discuss
related work. Section 6 concludes the paper.

2 Preliminaries

In this section we present preliminary concepts needed for a basic understanding
of the paper. We assume the reader to be reasonably familiar with concepts such
as functions, sets, bags, sequences and Petri nets.

2.1 Sets, Tuples, Sequences and Matrices

We denote the set of all possible multisets over set X as B(X). We denote
the set of all possible sequences over set X as X∗. The empty sequence is de-
noted 〈〉. Concatenation of sequences σ1 and σ2 is denoted as σ1 · σ2. Given
tuple x = (x1, x2, ..., xn) of Cartesian product X1 × X2 × ... × Xn, we define
πi(x) = xi for all i ∈ {1, 2, ..., n}. In case we have a tuple t ∈ X × Y × Z,
we have π1(t) ∈ X, π2(t) ∈ Y and π3(t) ∈ Z. We overload notation and ex-
tend projection to sequences, i.e. given sequence σ ∈ (X1 × X2 × ... × Xn)∗

of length k where σ = 〈(x11, x12, ..., x1n), (x21, x
2
2, ..., x

2
n), ..., (xk1 , x

k
2 , ..., x

k
n)〉, we

have πi(σ) = 〈x1i , x2i , ..., xki 〉 ∈ X∗i , for all i ∈ {1, 2, ..., n}. Given a sequence
σ = 〈x1, x2, ..., xk〉 ∈ X∗ and a function f : X → Y , we define πf : X∗ → Y ∗

with πf (σ) = 〈f(x1), f(x2), ..., f(xk)〉. Given Y ⊆ X we define ↓Y : X∗ → Y ∗

recursively with ↓Y (〈〉) = 〈〉 and ↓Y (〈x〉 · σ) = 〈x〉· ↓Y (σ) if x ∈ Y and
↓Y (〈x〉 · σ) =↓Y (σ) if x /∈ Y . We write σ↓Y for ↓Y (σ). Given an m× n matrix
A, i.e. A has m rows and n columns, Ai,j represents the element on row i and

Table 1: Example event log fragment.
Event-id Case-id Activity Resource Time-stamp

...

12474 1215 test (e) John 2017-11-14 14:45

12475 1216 register defect (a) Abdul 2017-11-14 15:12

12476 1215 order replacement (h) Maggy 2017-11-14 15:14

12477 1216 repair (b) Maggy 2017-11-14 15:31

12478 1216 inform client (d) Harry 2017-11-14 15:40

12479 1216 test (e) Maggy 2017-11-14 14:49

12480 1216 return to client (g) Maggy 2017-11-14 16:01

12481 1217 register defect (a) John 2017-11-14 16:03

...

column j (1 ≤ i ≤ m, 1 ≤ j ≤ n). Aᵀ represents the transpose of A. ~x ∈ Rn
denotes a column vector of length n, whereas ~xT represents a row vector.

2.2 Event Logs and Petri Nets

The execution of business processes within a company generates traces of event
data in its supporting information systems. We are able to extract such data
from these information systems, describing, for specific instances of the process,
e.g. an insurance claim, what sequence of activities has been performed over
time. We refer to a collection of such event data as an event log. A sequence
of executed process activities, related to a process instance, is referred to as a
trace. Consider Table 1, which depicts a simplified view of an event log.

The event log describes the execution of activities related to a phone repair
process. For example, consider all events related to case 1216, i.e. a new defect is
registered by Abdul, Maggy subsequently repairs the phone, Harry informs the
corresponding client, etc. When we consider all events executed for case 1216,
ordered by time-stamp, we observe that it generates the sequence of activities
〈a, b, d, e, g〉 (note that we use short-hand activity names for simplicity). Such
projection, i.e. merely focussing on the sequential ordering of activities, is also
referred to as the control-flow perspective. In the remainder of this paper we
assume this perspective, which we formalize in Definition 1.

Definition 1 (Event Log). Let A denote the universe of activities. An event
log L is a multiset of sequences over activities in A, i.e. L ∈ B(A∗).

Each sequence σ ∈ L describes a trace, which potentially occurs multiple times
in an event log.

Event logs describe the actual execution of business processes, i.e. as recorded
within a company’s information system. Process models on the other hand allow
us to describe the intended behaviour of a process. In this paper we use Petri
nets [15] as a process modelling notation. An example Petri net is depicted
in Fig. 1. The Petri net, like the event log, describes a process related to phone
repair. It dictates that first a register defect activity needs to be performed. After
this, a repair needs to be performed. Such repair is alternatively outsourced. In

p1 t1

a

register

defect

p2

p3 t4

d

inform client

t3

c

outsource repair

t2

b

repair

p5 t6

e

test

p4 t5

e

test

p6

t7

t8

g

return to client

t9

h

order replacement

p7

Fig. 1: Example labelled Petri net N1 = (P1, T1, F1, λ1) describing a (simplified)
phone-repair process.

parallel with the repair, the client is optionally informed about the status of the
repair. In any case, after the repair is completed, the repaired phone is tested.
If the test succeeds the phone is returned to the client. If the test fails, either a
new repair is performed, or, a replacement is ordered.

A Petri net is simply a bipartite graph with a set of vertices called places and
a set of vertices called transitions. Places, depicted as circles, represent the state
of the process. Transitions, depicted as boxes, represent executable actions, i.e.
activities. A place can be marked by one ore more tokens which are graphically
represented by black dots, depicted inside of the place, e.g. place p1 is marked
with one token in Fig. 1. If all places connected to a transition, by means of an
ingoing arc into the transition, contain a token, we are able to fire the transition,
i.e. equivalent with executing the activity represented by the transition. In such
case, the transition consumes a token for each incoming arc, and produces a
token for each of its outgoing arcs, e.g. transition t1 is enabled in Fig. 1. After
firing transition t1, the token in p1 is removed and both place p2 and place p3
contain a token. In this paper we assume that each transition has an associated
(possibly unobservable) label which represents the corresponding activity, e.g.
the label of transition t1 is register defect (or simply a in short-hand notation)
whereas transition t7 is unobservable.

Definition 2 (Labelled Petri net). Let P denote a set of places, let T denote
a set of transitions and let F ⊆ (P × T) ∪ (T × P) denote the flow relation. Let
Σ denote the universe of labels, let τ /∈ Σ denote the unobservable label and let
λ : T → Σ ∪ {τ}. A labelled Petri net is a quadruple N = (P, T, F, λ).

Observe that N1 in Fig. 1, in terms of Definition 2, is described as N1 =
(P1 = {p1, ..., p7}, T1 = {t1, t2, ..., t9}, F1 = {(p1, t1), ..., (t9, p7)}, λ1 = {λ1(t1) =
a, λ1(t2) = b, ..., λ1(t9) = h}). Additionally observe that λ1(t7) = τ , which is
graphically visualized by the black solid fill of transition t7.

Given an element x ∈ P ∪ T , we define •x = {y ∈ P ∪ T | (y, x) ∈ F} and
x• = {y ∈ P ∪ T | (x, y) ∈ F}. A marking m of Petri net N = (P, T, F, λ)
is a multiset of P , i.e. m ∈ B(P). Given such marking and a Petri net, we
write (N,m), which we refer to as a marked net. The initial marking of N is
denoted as mi, and thus, (N,mi) represents the initially marked net. When
a transition t is enabled in a marking m, i.e. ∀p ∈ •t(m(p) > 0), we write
(N,m)[t〉, e.g. (N1, [p1])[t1〉. Firing an enabled transition t in marking m, yielding

m′ = (m − •t)] t•, is written as (N,m)
t−→ (N,m′). If firing a sequence of

transitions σ = 〈t1, t2, ..., tn〉 ∈ T ∗, starts in marking m and yields marking

m′, i.e. (N,m)
t1−→ (N,m1)

t2−→ . . . (N,mn−1)
tn−→ (N,m′), we write (N,m)

σ−→
(N,m′). The set of all reachable markings from marking m is denotedR(N,m) =

{m′ ⊆ B(P) | ∃σ ∈ T ∗((N,m)
σ−→ (N,m′))}. Given a designated marking m

and target marking m′, we let L(N,m,m′) = {σ ∈ T ∗ | (N,m)
σ−→ (N,m′)}.

For example, 〈t1, t2, t5, t8〉 ∈ L(N1, [p1], [p7]). In case we are interested in the
sequence of activities described by a firing sequence σ we apply (πλ(σ))↓Σ , e.g.
(πλ1(〈t1, t2, t5, t7, t3, t4, t6, t8〉))↓Σ = 〈a, b, e, c, d, e, g〉.

In the remainder, we let A denote the incidence matrix of a (labelled) Petri
net N = (P, T, F, λ). A is an |T | × |P | matrix where Ai,j = 1 if pj ∈ ti • \ • ti,
Ai,j = −1 if pj ∈ •ti \ ti• and Ai,j = 0 otherwise. Further more, given some
marking m ∈ B(P), we write ~m to denote a |P |-sized column vector with ~m(i) =
m(pi) for 1 ≤ i ≤ |P |.

2.3 Alignments

The example event log and Petri net, presented in Table 1 and Fig. 1 respectively,
are both related to a simplified phone repair process. In case of our example trace
related to case 1216, i.e. 〈a, b, d, e, g〉, it is easy to see that there exists a σ ∈ T ∗1
s.t. (πλ1(σ))↓Σ = 〈a, b, d, e, g〉, i.e. σ = 〈t1, t2, t4, t6, t8〉. In practice however, such
direct mapping between observed activities and transition firings in a Petri net is
often not possible. In some cases, activities are not executed whereas the model
specifies they are supposed to. Similarly, in some cases we observe activities that
according to the model are not possible, at least at that specific point within the
trace. Such mismatches are for example caused by employees deviating from the
process as specified, e.g. activities are executed twice or mandatory activities
are skipped. Moreover, in many cases the process specification is not exactly in
line with the actual execution of the process, i.e. some aspects of the process are
overlooked when designing the process specification.

Alignments allow us to compare the behaviour recorded in an event log with
the behaviour as described by a Petri net. Conceptually, an alignment represents
a mapping between the activities observed in a trace σ ∈ L and the execution
of transitions in the Petri net. As an example, consider trace 〈a, d, d, e, g〉 and
reconsider Petri net N1 in Fig. 1. The trace does not fit the behaviour described
by N1. In Fig. 2 we present three different alignments of 〈a, d, d, e, g〉 and N1.
The first alignment, i.e. γ1, specifies that the execution of the second d-activity is
abundant, and, that an activity described by transition t2 is missing. Similarly,

γ1 :
a d d � e g
t1 t4 � t2 t6 t8

γ2 :
a � d d e g
t1 t3 � t4 t6 t8

γ3 :
a � d � � � d e g
t1 t2 t4 t6 t7 t3 t4 t6 t8

Fig. 2: Example alignments for 〈a, d, d, e, g〉 and N1.

the second alignment, i.e. γ2, specifies that an activity described by transition t3
is missing and that the first execution of the d-activity is abundant. Alignment
γ3 specifies that we are able to map each activity observed in the trace to a tran-
sition in the model, however, in such case, we at least miss activities described
by transitions t2, t3 and t6. Note that we do not miss an activity related to the
execution of transition t7, as this is an invisible transition.

When ignoring the �-symbols, the top row of each alignment equals the
given trace, i.e. 〈a, d, d, e, g〉. The bottom row of each alignment, again when
ignoring the �-symbols, represents a firing sequence in the language of N1, i.e.
σ ∈ L(N1, [p1], [p7]). Each individual column is referred to as a move. A move
of the form | a� | is called a log move and represents behaviour observed in the
trace that is not mapped onto the model. A move of the form |�t | is called a
model move and represents behaviour that according to the model should have
happened, yet was not observed at that position in the trace. A move of the
form |at | is called a synchronous move and represents an observed activity that
is also described by the model at that position in the trace.

Definition 3 (Alignment). Let σ ∈ A∗ be a trace. Let N = (P, T, F, λ) be a
labelled Petri net and let mi,mf ∈ B(P) denote N ′s initial and final marking.
Let �/∈ A ∪ T . A sequence γ ∈ ((A ∪ {�})× (T ∪ {�}))∗ is an alignment if:

1. (π1(γ))↓A = σ; event part equals σ.

2. (N,mi)
(π2(γ))↓T−−−−−−→ (N,mf); transition part is in the Petri net’s language.

3. ∀(a, t) ∈ γ(a 6=� ∨t 6=�); (�,�) is not valid in an alignment.

We let Γ (N, σ,mi,mf) denote the set of all possible alignments of Petri net N
and trace σ given markings mi and mf .

As exemplified by the three alignments of 〈a, d, d, e, g〉 and N1, a multitude
of alignments exists for a given trace and model. Hence, we need a means to be
able to rank and compare alignments in such way that we are able to express
our preference of an alignment w.r.t. other alignments. For example, in Fig. 2,
we prefer γ1 and γ2 over γ3, as we need less �-symbols to explain the observed
behaviour in terms of the model. Computing such preference is performed by
means of minimizing a cost function defined over the possible moves of an align-
ment. We present a general definition of such cost function in Definition 4, after
which we provide a commonly used corresponding instantiation.

Definition 4 (Alignment Cost). Let σ ∈ A∗, let N = (P, T, F, λ) be a labelled
Petri net with mi,mf ∈ B(P), let �/∈ A ∪ T and let c : (A ∪ {�}) × (T ∪
{�}) → R≥0. Given alignment γ ∈ Γ (N, σ,mi,mf), the costs κc of γ, given

move cost function c, is defined as κc(γ) =
∑|γ|
i=1 c(γ(i)). Finally, we let γ∗c ∈

arg minγ∈Γ (N,σ,mi,mf)
κc(γ).

The cost of an alignment is defined as the sum of the cost of each move
within the alignment, as specified by cost function c. If it is clear from context
what cost function c is used, we omit it from the cost related notation, i.e. we
write κ, γ∗ etc. Note that γ∗ is an alignment that has minimum costs amongst
all alignments of a given model and trace, i.e. an optimal alignment. In general
one can opt to use an arbitrary instantiation of c, however, a cost function that
is used quite often is the following unit-cost function:

1. c(a, t) = 0⇔ a ∈ A, t ∈ T and λ(t) = a or a =� and λ(t) = τ .1

2. c(a, t) =∞⇔ a ∈ A, t ∈ T and λ(t) 6= a
3. c(a, t) = 1 otherwise

Using the unit-cost function, γ1 and γ2 of Fig. 2 are both optimal for 〈a, d, d, e, g〉
and N1, i.e. both alignments have cost 2. This shows that optimality is not
guaranteed to be unique for alignments.

3 Computing Optimal Alignments

In this section we present the basic alignment computation algorithm. The al-
gorithm, in essence, is a modification of the A∗ algorithm [8], i.e. a general
purpose shortest path algorithm. We do however incorporate alignment-specific
optimizations within the algorithm that have shown to be beneficial for the over-
all performance of the approach, i.e. in terms of search efficiency and memory
usage [19]. The algorithm applies a shortest path search on the state-space of
the synchronous product net of the given trace and Petri net. As such, we first
present how such synchronous product net is constructed, after which we present
the alignment algorithm.

3.1 Constructing the Synchronous Product Net

To find an optimal alignment, i.e. an alignment that minimizes the cost function
of choice, we solve a shortest path problem defined on the state space of the
synchronous product net of the given trace and model. Such synchronous product
net encodes the trace as a sequential Petri net and integrates it with the original
model. As such, each transition in the synchronous product net represents a
move within the resulting alignment. Executing such transition corresponds to
putting the corresponding move in the alignment. Consider Fig. 3, which depicts
the synchronous product net of trace 〈a, d, d, e, g〉 and example Petri net N1.

The sequence of black transitions, depicted on the top of the synchronous
product net represents the input trace, i.e. 〈a, d, d, e, g〉. The labels of these

1 In some cases, if the absence of token-generators is not guaranteed, we use c(a, t) = ε,
where ε is a positive real number smaller than 1 and close to 0

p1 (t1,�)

(a,�)

p2 (t2,�)

(d,�)

p3 (t3,�)

(d,�)

p4 (t4,�)

(e,�)

p5 (t5,�)

(g,�)

p6

(t1, t
′
1) (a, a) (t2, t

′
4) (d, d) (t3, t

′
4) (d, d)

(t4, t
′
5)

(e, e)

(t4, t
′
6)

(e, e)

(t5, t
′
8) (g, g)

(�, t′2)

(�, b)

(�, t′3)

(�, c)

p′2

(�, t′1)

(�, a)

p′1

p′3 (�, t′4)

(�, d)

p′4

p′5

(�, t′5)

(�, e)

(�, t′6)

(�, e)

p′6

(�, t′7)

(�, τ)

(�, t′8)

(�, g)

(�, t′9)

(�, h)

p′7

Fig. 3: Synchronous product net NS
1 of trace 〈a, d, d, e, g〉 and example Petri net

N1. Note that we have renamed elements of N1 using a ′-symbol, i.e. p′1, t′1 etc.

transitions represent log moves, e.g. transition (t1,�) has label (a,�). Observe
that, we are able to, from the initial marking [p1, p

′
1], generate a firing sequence

〈(a,�), (d,�), ..., (g,�)〉 (projected onto labels) marking [p′1, p6]. Such firing
sequence corresponds to a sequence of log moves which describe the given trace.
The lower part of the synchronous product net represents Petri net N1, however,
the transition names represent model moves, e.g. transition (�, t′1) directly re-
lates to a model move on t′1. Observe that, using these transitions we are able
to generate firing sequences of model moves that correspond to firing sequences
that are in N1’s language. Finally, the middle (grey) transitions manipulate both
the marking of the top part of the synchronous product net as the bottom part.
Each of these transitions represents a synchronous move, e.g. consider transition
(t1, t

′
1) representing a synchronous move of the first event of 〈a, d, d, e, g〉, i.e.

representing activity a, and transition t′1 (which in Fig. 1 is identified as t1).
We formally define a synchronous product net as the product of a Petri

net that represents the input trace (i.e., a trace net), together with the given
process model. As such, we first define a trace net, after which we provide a
general definition of the product of two Petri nets.

Definition 5 (Trace net). Let σ ∈ A∗ be a trace. We define the trace net of
σ as a labelled Petri net N = (P, T, F, λ), where:

– P = {pi | 1 ≤ i ≤ |σ|+ 1}.
– T = {ti | 1 ≤ i ≤ |σ|}.
– F = {(pi, ti) | 1 ≤ i ≤ |σ|∧pi ∈ P ∧ ti ∈ T}∪{(ti, pi+1) | 1 ≤ i ≤ |σ|∧pi+1 ∈
P ∧ ti ∈ T}.

– λ(ti) = σ(i), for 1 ≤ i ≤ |σ|.

Given a trace σ we write Nσ to refer to the trace net of σ. We subsequently
define the product of two arbitrary labelled Petri nets.

Definition 6 (Petri net Product). Let N = (P, T, F, λ) and N ′ = (P ′, T ′, F ′, λ′)
be two Petri nets (where P ∩P ′ = ∅ and T ∩T ′ = ∅). The product of N and N ′,
i.e. Petri net N ⊗N ′ = (P⊗, T⊗, F⊗, λ⊗) where:

– P⊗ = P ∪ P ′.
– T⊗ = (T × {�}) ∪ ({�} × T ′) ∪ {(t, t′) ∈ T × T ′ | λ(t) = λ′(t′)}
– F⊗ = {(p, (t, t′)) ∈ P⊗ × T⊗ | (p, t) ∈ F ∨ (p, t′) ∈ F ′)} ∪ {((t, t′), p) ∈
T⊗ × P⊗ | (t, p) ∈ F ∨ (t′, p) ∈ F ′}.

– λ⊗ : T⊗ → (Σ ∪ {τ} ∪ {�}) × (Σ ∪ {τ} ∪ {�}) (assuming �/∈ Σ ∪ {τ})
where:
λ⊗(t,�) = (λ(t),�) for t ∈ T
λ⊗(�, t′) = (�, λ′(t′)) for t′ ∈ T ′
λ⊗(t, t′) = (λ(t), λ′(t′)) for t ∈ T, t′ ∈ T ′.

A synchronous product net is defined as the product of a trace net Nσ and
an arbitrary Petri net N , i.e. Nσ ⊗N . Assume we construct such synchronous
product net NS = (PS , TS , FS , λS) based on a trace net Nσ = (Pσ, Tσ, Fσ, λσ)
of trace σ and Petri net N = (P, T, F, λ). Moreover, let pi ∈ Pσ with •pi = ∅,
pf ∈ Pσ with pf• = ∅, and, let mi, mf denote a designated initial and final
marking of N . Furthermore, let mS

i = mi] [pi] and mS
f = mf] [pf]. Any firing

sequence σ′ ∈ (TS)∗, s.t. mS
i

σ′−→ mS
f corresponds to an alignment of σ and N [6].

To be able to compute an alignment based on a synchronous product net, such
firing sequence needs to exist. The problem of determining whether such sequence
exists is known as the reachability problem, which is shown to be decidable [10,13].
However, within conformance checking, we assume that a reference model of a
process is designed by a human business process analyst/designer. We therefore
assume that a process model has a certain level of quality, e.g. the Petri net is
a sound workflow net [1, Definition 7]. In context of alignment computation we
therefore simply assume that a Petri net N , given initial marking mi and final
marking mf is easy sound, i.e. L(N,mi,mf) 6= ∅. A synchronous product net
of a trace net and an easy sound Petri net is, by construction, easy sound, and
thus guarantees reachability of its final marking.

To derive the actual move related to each transition in some firing sequence
σ′ ∈ L(NS ,mS

i ,m
S
f), we utilize the label function of the synchronous product

net. In case we observe a transition of the form (�, t), i.e. with t ∈ Tσ, we
know it relates to a log move, which is obtained by applying λS((t,�)), e.g.
λ((t1,�)) = (a,�) in Fig. 3. In case we observe a transition of the form (�, t)
t ∈ T , we know it relates to a model move, which is reflected by the transition
name, i.e. we do not need to fetch the transition’s label, e.g. (�, t′1) in Fig. 3.
A transition of the form (t, t′) ∈ TS , i.e. with t 6=� and t′ 6=� corresponds to
a synchronous move, which we translate into such move by applying (λσ(t), t′),
e.g. (λσ(t1), t′1) = (a, t′1) in Fig. 3. Since we are able to map each transition in the

synchronous product net onto a corresponding move, we are also able to deduce
the move costs corresponding to any such transition present in the synchronous
product net. Therefore, in the remainder, given a synchronous product net NS =
(PS , TS , FS , λS), we assume the existence of a corresponding transition-based
move cost function cS : TS → R≥0 that maps each transition in the synchronous
product net to the costs of the underlying move it represents.

3.2 Searching for Optimal Alignments

In this section, we present the state-of-the art algorithm for optimal alignment
computation. We first present an informal overview of the A∗-algorithm. Sub-
sequently we describe how to exploit the marking equation for the purpose of
heuristic estimation, after which we show how to limit the number of states en-
queued during the search. Finally we present a concise corresponding algorithmic
description.

Applying A∗ Each transition in the synchronous product net corresponds to
a move in an alignment, and moreover, to an arc in the state space of the
synchronous product. Since each move/transition has an associated cost, we are
able to assign the weight of each arc in the net’s state space with the cost of the
associated move. For example, observe Fig. 4, in which we depict a (small) part of
the state-space of NS

1 (Fig. 3). The initial state of the state space, i.e. [p1, p
′
1], is

depicted on the top-left. We are able to fire (t1,�), corresponding to a log-move
| a� |, yielding marking [p2, p

′
1]. Similarly, in [p1, p

′
1], we are able to fire (�, t′1),

corresponding to model move |�t1 |, yielding marking [p1, p
′
2, p
′
3]. The order of

firing these two transitions is irrelevant, i.e. [p1, p
′
1]
〈(t1,�),(�,t′1)〉−−−−−−−−−−→ [p2, p

′
2, p
′
3],

and, [p1, p
′
1]
〈(�,t′1),(t1,�)〉−−−−−−−−−−→ [p2, p

′
2, p
′
3].2 Observe that we are also able to mark

[p2, p
′
2, p
′
3] by firing (t1, t

′
1) in marking [p1, p

′
1], corresponding to synchronous

move | at′1 |. From [p2, p
′
2, p
′
3] we are able to fire (t2,�), (t2, t

′
4), (�, t′2), (�, t′3),

and (�, t′4) (not all of these transitions are explicitly visualized for the ease of
readability/simplicity).

As indicated, each transition corresponds to a move, which, according to
the corresponding cost function cS has an associated cost. As such, the goal of
finding an optimal alignment is equivalent to solving a shortest path problem
on the state space of the synchronous product net [6]. Within the given shortest
path problem, the initial marking of the given Petri net combined with the first
place of the trace net defines the initial state (i.e. mS

i). Similarly the target state
is a combination of the given final marking of the model combined with the last
place of the trace net (i.e. mS

f).
Many algorithms exist that solve a shortest path problem on a weighted

graph with a unique start vertex and a set of end vertices. In this paper we

2 The label [p2, p
′
2, p
′
3] is not shown in Fig. 4, it corresponds to the state on the second

row and second column.

[p1, p
′
1]

[p1, p
′
2, p
′
3]

(�, t′1)

[p2, p
′
1](t1,�) (t2,�) (t3,�)

......

(�, t′1)

(t1,�)

(t1, t
′
1) (�, t′1)

(t2,�)

(�, t′1)

(t3,�)
......

(�, t′4)

...

...

(�, t′4)

(t1,�)

...

...

(�, t′4)

(t2,�)

(t2, t
′
4)

...

...

(�, t′4)

(t3,�)
......

...

...

Fig. 4: Part of the state-space of the synchronous product net NS
1 shown in

Fig. 3. Observe that in some markings, more transitions are enabled than we
explicitly show here, e.g. in marking [p1, p

′
2, p
′
3], transitions (�, t′2) and (�, t′3)are

additionally enabled.

predominantly focus on the A∗ algorithm [8]. The A∗ algorithm is an informed
search algorithm, i.e. it tries to incorporate specific knowledge of the graph within
the search. In particular, it uses a heuristic function that approximates, for
each vertex in the given graph, the expected remaining distance to the closest
end vertex. The A∗ algorithm is admissible, i.e. it guarantees to find a shortest
path, if the heuristic always underestimates the actual distance to the/any final
state. In case of computing optimal alignments based on the state space of the
synchronous product net, markings of the synchronous product net represent
vertices. Hence, we formally define a heuristic function on the basis of arbitrary
labelled Petri nets, after which we provide an instantiation tied to synchronous
product nets.

Definition 7 (Petri net based heuristic function). Let N = (P, T, F, λ) be
a Petri net. A heuristic function hN is a function hN : B(P)× B(P)→ R≥0.

Using the previously defined heuristic, we are able to, given an initial marking
mS
i and final marking mS

f , of a synchronous product net NS = (PS , TS , FS , λS),
apply the default A∗ approach, which roughly performs the following steps.

1. Inspect marking m that minimizes f(m) = g(m)+hN
S

(m,mS
f), where g(m)

is the actual distance from mS
i to m (note that g(mS

i) = 0).

2. For each adjacent marking m′, i.e. ∃t ∈ TS(m
t−→ m′), compute hN

S

(m′,mS
f).

Furthermore, ∀t ∈ TS(m
t−→ m′), we apply g(m′)←min(g(m′), g(m)+cS(t))

(initially g(m) =∞,∀m ∈ R(N,mS
i) \mS

i).

Initially, marking mS
i is the only known marking with a g-value unequal to ∞,

i.e. g(mS
i) = 0. Thus, starting with mS

i , we repeat the two aforementioned steps
until either we end up at mS

f , or, no more markings are to be assessed. Due to the
easy-soundness assumption we are guaranteed to always arrive, at some point,
at mS

f . Moreover, admissibility implies that the first time we assess marking mS
f ,

g(mS
f) represents the shortest path from mS

i to mS
f in terms of move costs, and

thus corresponding alignment costs. In general, it is possible to visit a marking
m multiple times in step 2, potentially leading to a lower g(m)-value. However,
if a heuristic function is consistent, i.e. for markings m,m′,m′′ and transition

t ∈ TS s.t. (NS ,m)
t−→ (NS ,m′), we have hN

S

(m,m′′) ≤ hN
S

(m′,m′′) + cS(t),
we are guaranteed that once we reach a vertex during the A∗ search, we are not
able to reach it using an alternative path with lower costs than the current path.
Hence, in case the heuristic function used is consistent, we know that once we
inspect a marking m in step 1, g(m) is minimal. As a consequence, whenever we
reach it again in step 2, we are allowed to ignore it.

Exploiting the State Equation In this paper we provide an instantiation of

the heuristic function, i.e. hN
S

, that exploits the state equation of Petri nets,
i.e. an algebraic expression of marking changes in a Petri net. Let ~x denote at
|T |-sized column vector of integers, let m and m′ denote two markings and let

σ ∈ T ∗ s.t. (N,m)
σ−→ (N,m′) and let ~m and ~m′ denote the corresponding |P |-

sized marking column vectors. The state equation states that when we instantiate
~x as the Parikh vector of σ, i.e. if transition ti occurs k times in σ then ~x(i) = k,
~x is a solution to ~m′ = ~m + AT~x. The reverse does however not hold, i.e. if we
find a solution to ~m′ = ~m + AT~x, such solution ~x is not necessarily a Parikh

representation of a σ′ ∈ T ∗ s.t. (N,m)
σ′−→ (N,m′).

Nonetheless, we utilize the state equation for the purpose of calculating a
Petri net based heuristic function. Given a marking m and target marking m′

within the synchronous product net, we try to find a solution to ~m′ = ~m+AT~x,
where A and ~x are defined in terms of the synchronous product net. Moreover,
such solution needs to minimize the corresponding alignment cost, i.e. recall that
for 1 ≤ i ≤ |TS |, ~x(i) refers to a transition ti ∈ TS which has an associated cost
as defined by the transition-based move cost function cS(ti).

Definition 8 (State equation based heuristic). Let σ ∈ A∗ be a trace and
let N = (P, T, F, λ) be a Petri net. Let NS = Nσ ⊗ N = (PS , TS , FS , λS) be
the synchronous product net of σ and N . Let A denote the incidence matrix of
NS, let m,m′ ∈ B(PS), and let ~m, ~m′ be the corresponding |PS |-sized vectors
Let cS : TS → R≥0 be the transition-based move cost function and let ~c denote

a corresponding |TS |-sized vector with ~c(i) = cS(ti) (for ti ∈ TS). Let ~x ∈ R|T
S |

≥0

be a |TS |-sized vector. We instantiate hN
S

(Definition 7) with hN
S

(m,m′) =∞
if no solution exists to ~m′ = ~m+ AT~x, and otherwise:

min(~cᵀ~x | ~m′ = ~m+ AT~x)

Observe that we define ~x as a vector containing non-negative real valued numbers
(R≥0) rather than naturals (N). Note that this potentially leads to fractional
values in ~x. However, since we aim at underestimating the true distance to the
final marking this is acceptable, i.e. the vector does not need to correspond
to an actual firing sequence. We are thus able to compute the state equation
based heuristic by formulating and subsequently solving it as either a Linear
Programming- (LP) or an Integer Linear Programming (ILP) problem [17].3

Observe that, in case no solution to the (I)LP exists, we simply assign a value
of ∞ to the heuristic. Since an (I)LP solution is always smaller or equal to the
true costs of reaching target marking m′ from marking m, the state equation
based heuristic is admissible. As shown in [6], the heuristic is also consistent.

In step 2 of the A∗ approach, we compute the heuristic hN
S

(m′,mS
f) as

defined in Definition 8 by solving an (Integer) Linear Programming problem.
Observe that, as exemplified earlier, there are often multiple ways to arrive at a
certain marking within the state space of the synchronous product net. To avoid

solving the same (I)LP multiple times, once we have computed hN
S

(m′,mS
f) we

are able to store the solution value for m′ in a temporary cache, and, remove it
when we fetch m′ in step 1. However, specifically in case of solving an Integer

Linear Programming problem, computing the hN
S

(m′,mS
f) is potentially time

consuming. As it turns out, in some cases, the solution vector ~x of the (I)LP
solved for marking m allows us to derive, for an adjacent marking m′, i.e. ∃t ∈
TN

S

(m
t−→ m′), an exact value for hN

S

(m′,mS
f).

Conceptually, given that we assess some marking m, this works as follows.

When we compute hN
S

(m,mS
f), given that it is not equal to ∞, we obtain an

associated solution vector ~x. Such vector essentially describes the number of
times a transition is ought to be fired to reach mf from m, even though there
does not necessarily exists a corresponding firing sequence containing the exact
number of transition firings as described by ~x. Assume that from m we are able
to traverse an edge related to firing a transition ti, for which ~x(i) ≥ 1, yielding
marking m′. In such case, we are guaranteed, as we show in Proposition 1, that

the solution value for hN
S

(m′,mS
f) equals hN

S

(m,mS
f)− cS(ti), i.e. we are able

to subtract the cost of the move represented by ti from hN
S

(m,mS
f). Even in

the case that ~x(i) < 1, we are able to devise a lower bound for the value of

hN
S

(m′,mS
f), as we show in Proposition 2.

Proposition 1 (State based heuristic provides exact solution). Let A de-
note the incidence matrix of a synchronous product net NS = (PS , TS , FS , λS)

3 In case we solve an ILP, we enforce ~x ∈ N|T
S |.

and let m,mf ∈ B(PS). Let cS : TS → R≥0 be the transition-based move cost

function and let ~c ∈ R|T
S |

≥0 with ~c(i) = cS(ti) for ti ∈ TS. Let ~x∗ ∈ arg min
~x∈R|T

S |
≥0

(~cᵀ~x |

~mf = ~m+ AT~x). Let m′ ∈ B(PS) and let ti ∈ TS s.t. (NS ,m)
ti−→ (NS ,m′). If

~x∗(i) ≥ 1, then ~cT(~x∗ −~1ti) = min
~x∈R|T

S |
≥0

(~cᵀ~x | ~mf = ~m′ + AT~x).

Proof. Observe that, according to the state equation, ~m′ = ~m+ AT~1ti , and thus,

~m = ~m′−AT~1ti . From this, we deduce ~mf = ~m+AT~x∗ = ~m′−AT~1ti +AT~x∗ =
~m′ + AT(~x∗ −~1ti), i.e. ~x∗ −~1ti is a solution to ~mf = ~m′ + AT~x.

Assume ~cT(~x∗ − ~1ti) > min
~x∈R|T

S |
≥0

(~cᵀ~x | ~mf = ~m′ + AT~x), which implies

that there exists an alternative minimal solution for ~mf = ~m′ + AT~x, i.e. ∃~y ∈
arg min

~x∈R|T
S |

≥0

(~cᵀ~x | ~mf = ~m′ + AT~x) with ~cT~y < ~cT(~x∗ −~1ti).

Again by using the fact that ~m′ = ~m + AT~1ti , we observe that since ~y is a
solution to ~mf = ~m′+ AT~x, also (~y+~1ti) is a solution to ~mf = ~m+ AT~x. This

however contradicts minimality of ~x∗ since ~cT~y < ~cT(~x∗−~1ti) =⇒ ~cT(~y+~1ti) <
~cT~x∗. �

Proposition 1 shows that if we compute a heuristic value for hN
S

(m,mS
f) formed

by underlying variable assignment ~x∗, then in case there exists some ti ∈ TS with

~x∗(i) ≥ 1 and m
ti−→ m′, we are guaranteed that hN

S

(m′,mS
f) = hN

S

(m,mS
f)−

~c(i) = hN
S

(m,mS
f) − cS(ti). This effectively allows us to reduce the number of

(I)LP’s we need to solve. It is however also possible that there is some tj ∈ TS
with ~x∗(j) < 1. In such case ~x∗ − ~1tj is not a solution to ~mf = ~m′ + AT~x, it
does however provide a lower bound on the actual heuristic value of m′.

Proposition 2 (State based heuristic provides an upper bound). Let A
denote the incidence matrix of a synchronous product net NS = (PS , TS , FS , λS)
and let m,mf ∈ B(PS). Let cS : TS → R≥0 be the transition-based move cost

function and let ~c ∈ R|T
S |

≥0 with ~c(i) = cS(ti) for ti ∈ TS. Let ~x∗ ∈ arg min
~x∈R|T

S |
≥0

(~cᵀ~x |

~mf = ~m+ AT~x). Let m′ ∈ B(PS) and let ti ∈ TS s.t. (NS ,m)
ti−→ (NS ,m′). If

~x∗(i) < 1, then ~cT(~x∗ −~1ti) ≤min
~x∈R|T

S |
≥0

(~cᵀ~x | ~mf = ~m′ + AT~x).

Proof. Assume there is a minimal solution ~y to ~mf = ~m′ + AT~x, i.e. ∃~y ∈
arg min

~x∈R|T
S |

≥0

(~cᵀ~x | ~mf = ~m′ + AT~x) s.t. ~cT~y < ~cT(~x∗ − ~1ti). Since (~y + ~1ti)

is a solution to ~mf = ~m + AT~x (c.f. Proposition 1), this contradicts ~x∗ ∈
arg min

~x∈R|T
S |

≥0

(~cᵀ~x | ~mf = ~m+ AT~x) since ~cT(~y +~1ti) < ~cT~x∗. �

If Proposition 2 applies, we know that hN
S

(m′,mS
f) ≥ ~cT(~x∗ − ~1ti). Thus,

~cT(~x∗−~1ti) underestimates the true value of hN
S

(m′,mS
f) and we write ĥN

S

(m′,mS
f) =

~cT(~x∗−~1ti). Whenever we derive ĥN
S

(m′,mS
f), we know g(m′), i.e. we compute

ĥN
S

(m′,mS
f) in step 2 of the basic A∗ approach. Thus, we are also able to derive

an underestimating f(m′) value, i.e. f̂(m′) = g(m′) + ĥN
S

(m′,mS
f). In practice

this implies that instead of solving an (I)LP when we investigate a new marking,
we just deduce the f -value, which is potentially an underestimate. In case it is
an underestimate, we keep track of this, and whenever we, in step 1, inspect an
element with a minimal underestimated f -value, we try to find an exact solution
by solving an (I)LP. In such case it is possible that f(m) > f̂(m), in which we
need to select a new marking in step 1 that minimizes the f -value.

Limiting Transition Ordering Reconsider the synchronous product net shown
in Fig. 3 with initial marking [p1, p

′
1]. Recall that there are three firing sequences

in the net to achieve marking [p2, p
′
2, p
′
3], i.e. 〈(�, t′1), (t1,�)〉, 〈(t1,�), (�, t′1)〉

and 〈(t1, t′1)〉. The cost associated with 〈(t1, t′1)〉 is 0 whereas the cost for 〈(�
, t′1), (t1,�)〉 and 〈(t1,�), (�, t′1)〉 is 2. We observe that both possible permuta-
tions of the sequence containing (t1,�) and (�, t′1) have the same cost and are
both part of a (sub-optimal) alignment.

In general, assume we have an alignment γ · 〈x, y〉 · γ′ ∈ Γ (N, σ,mi,mf) s.t.
x is a log move and y is a model move. Moreover, let tx denote the transition in
the underlying synchronous product related to x, and let ty denote the transition
related to move y. Since, by construction, •tx∩•ty = ∅, •tx∩ty• = ∅, tx•∩•ty = ∅
and tx • ∩ty• = ∅, we trivially deduce that also γ · 〈y, x〉 · γ′ ∈ Γ (N, σ,mi,mf).
Additionally, we have κ(γ · 〈x, y〉 · γ′) = κ(γ · 〈x, y〉 · γ′), i.e. alignment costs are
order independent.

Hence, to find an optimal alignment we only need to traverse/inspect one spe-
cific permutation of such log/model move combinations, rather than all possible
permutations. In step 2 of the basic A∗ scheme, each enabled transition in mark-
ing m is investigated. However, we are able to limit this number of transitions
by exploiting the previously mentioned property, i.e.:

– Log move restriction; If the transition leading to the current marking relates
to a model move we only consider those transitions t that relate to a model
or synchronous move.

– Model move restriction; If the transition leading to the current marking
relates to a log move we only consider those transitions t that relate to a log
or synchronous move.

In the first option we are not able to schedule a log move after a model move. The
other way around is however possible, i.e. we are allowed to schedule a model
move after a log move. The second option behaves exactly opposite, i.e. we are
not allowed to schedule a model move after a log move. Note that during the
search we either only apply log move restriction, or, model move restriction, i.e.
these techniques cannot be mixed.

Algorithmic Description In Algorithm 1, we present the basic algorithm
for optimal alignment computation using A∗, which additionally incorporates
Proposition 1 and Proposition 2 together with model move restriction. The algo-
rithm takes a trace net and a sequence as an input, and for both nets, expects an

Algorithm 1: A∗ (Alignments)

input : Nσ = (Pσ, Tσ, Fσ, λσ),mσi ,m
σ
f ∈ B(P

σ), N = (P, T, F, λ),mi,mf ∈ B(P)

output: optimal alignment γ∗ ∈ Γ (N, σ,m′i,m
′
f)

begin

1 NS = (PS , TS , FS , λS) = Nσ ⊗N ; // create synchronous product

2 mSi ← mσi]m
S
i ; m

S
f ← mσf]m

′
f ; // create initial/final marking

3 C ← ∅; // initialize closed set

4 X ← {mSi }; // initialize open set
5 Y ← ∅; // initialize estimated heuristics

6 p(mSi) = (∅,∅); // initialize predecessor function

7 ∀m ∈ R(NS ,mSi) g(m)←∞; // initialize cost so far function g

8 g(mSi)← 0; // initialize distance for initial marking

9 f(mSi)← hN
S
(mSi ,m

S
f); // compute estimate for initial marking

10 while |X| > 0 do
11 m← arg minm∈Xf(m);

12 if m = mSf then

13 return alignment derived from 〈t1, . . . , tn〉 where tn = π1(p(m
S
f)),

tn−1 = π1(p(π2(p(m
S
f)))), etc. until the initial marking is reached recursively;

14 if m ∈ Y then
15 Y ← Y \ {m} ; // remove estimated heuristic

16 if hN
S
(m,mSf) > ĥN

S
(m,mSf) then

17 f(m)← g(m) + hN
S
(m,mSf);

18 continue while; // m is not nessecarily minimizing f any more

19 C ← C ∪ {m}; // add m to the closed set
20 X ← X \ {m}; // remove m from the open set

21 T ′ ← TS ;
22 if π1(p(m)) = (t,�), where t ∈ Tσ then
23 T ′ ← T ′ \ ({�} × T); // model moves not allowed after log moves

24 forall t ∈ T ′ s.t. (NS ,m)
t−→ (NS ,m′) do

25 if m′ 6∈ C then

26 if g(m) + cS(t) < g(m′) then

27 g(m′)← g(m) + cS(t); // update cost so far function

28 ĥN
S
(m′,mSf)← hN

S
(m,mSf)− c

S(t); // estimate heuristic

29 f(m′)← g(m′) + ĥN
S
(m′,mSf);

30 if ĥN
S
(m′,mSf) is not exact then

31 Y ← Y ∪ {m′}; // add m′ to the estimated heuristics set

32 X ← X ∪ {m′}; // add m′ to the open set

33 p(m′)← (t,m); // update predecessor function

34 return failure;

initial and final marking. In line 1 and line 2 we construct the synchronous prod-
uct net and corresponding initial- and final marking. Subsequently, in lines 3-5,
we initialize the closed set C, open set X, and estimated heuristic set Y . Since
the heuristic is consistent, whenever we investigate a marking, we know that the
f -value for such marking no longer changes. Hence, the closed set C contains all
markings that we have already visited, i.e. for which we have a corresponding
final f -value. Within X we maintain all markings inspected at some point, i.e.
their g-value is known, and their h-value is either exact or estimated. In Y we

keep track of all markings with an underestimating heuristic. In line 6 we ini-
tialize pointer function p, which allows us to reconstruct the actual alignment
once we reach mS

f . As long as X contains markings, we select one of the mark-

ings having a minimal f -value (line 11). In case the new marking equals mS
f we

construct, using pointer-structure p(mS
f), the alignment. If the marking is not

equal to mS
f , we, in line 14, check if the corresponding f -value is exact or not.

In case it is not, and, the exact hN
S

(m,mS
f) value is exceeding the estimate, we

recalculate the marking’s f -measure and go back to line 11. In any other case,
we proceed by storing marking m in the closed set C and by removing it from
X. In lines 21-23 we apply model move restriction. Note that it is trivial to alter
the code in these lines in order to apply log move restriction. Finally, we fire

each transition t ∈ T ′ s.t. (NS ,m)
t−→ (NS ,m′). If the newly reached marking

m′ is not in the closed set C, we add it to X and check whether we found a
shorter path to reach it. If so we update its g-value and derive its h-value.4. If
we actually compute an underestimate, i.e. an ĥ-value, we register this by adding
m′ to Y . Finally, we update the pointer-structure p for m′.

It is important to note that set X of Algorithm 1, is typically implemented
as a queue. In its basic form, fetching the top element of the queue, i.e. as
represented by m ← arg minm∈Xf(m) in line 11, yields any marking that
minimizes the (potentially estimated) f -value. In general, a multitude of such

markings exists. As observed in [19], minimizing the individual hN
S

-value (or

ĥN
S

) as a second-order criterion, enhances alignment computation efficiency
significantly. We call such second-order criterion DFS, as it effectively reduces
the estimated distance to a final marking. Within this paper we assume DFS is
always applied as a second-order sorting criterion.

4 Evaluation

In this section, we evaluate the effect of different parameters in the search for
an optimal alignment for different populations of Petri nets, measured in terms
of search efficiency and memory usage. We measure the efficiency of the search
using two metrics: the number of visited states and the number of traversed
arcs. We measure the memory usage of the search using a single metric: the
maximum number of queued states. Due to the scale of the experiments we
have used multiple machines which does not allow us to compare computation
time/memory usage directly in all cases. We do however provide such results
in case they are comparable. In the remainder of this section we describe the
experimental set-up and present a discussion of the obtained results.

4 In practice, we cache h-values, thus we only derive a new h-value if we did not
compute an exact h-value in an earlier stage

For each Petri Net...

For each Trace...

Parameter Combination

Generate
Petri Nets

Petri Net Population
Parameters

Generate
Log Traces

Add Noise
to Traces

Noise
Parameters

Conformance Checking
Parameters

Collection of
Petri Nets

Petri Net

Collection of
Traces

Collection of
Traces w/

added Noise

Log
Parameters

Conformance
Checking

Trace w/
added noise

Store Results

Results

Fig. 5: Overview of the Experiment Design (modeled in BPMN notation).

4.1 Experimental Setup

The global workflow used in the experiment is illustrated in Fig. 5. For each
combination of parameters, the following analysis steps are executed:

1. Generate a sample of (block-structured) Petri nets from a given population
(defined in the “Petri net Population Parameters” object).

2. For each Petri net, generate a sample of traces that fit it (defined in the “Log
Parameters” object).

3. For each generated trace, add an amount of noise (defined in the “Noise
Parameters” object).

4. For each trace with added noise, check the conformance of the trace with
respect to the Petri net (using the parameters defined in the “Conformance
Checking Parameters” object) and store the results.

Note that the blocks, i.e. analysis steps, included in this high-level workflow are
not necessarily bound to a concrete implementation. For example, one can use the
approach presented in [9] to generate process trees that are translated into block-
structured Petri nets, and also to generate event logs from them. Alternatively,
any other approach that can generate Petri nets from defined populations can
be used instead.

For the experiment, this high-level workflow was implemented as a scien-
tific process mining workflow [7] in RapidMiner using building-blocks from the
process mining extension RapidProM [5].

The generic workflow presented above enables many types of analysis that al-
low us to answer a wide variety of research questions related to the efficiency and
memory usage of alignments. The experiment performed in this paper focuses
on alignment parameters through the following research questions:

Q1 What is the global effect of approximation of the heuristic on the search
efficiency and memory usage of alignments?

Q2 What is the effect of incorporating exact derived heuristics within the second-
order queuing criterion on the search efficiency and memory usage of align-
ments?

Q3 What is the effect of transition restriction on the search efficiency and mem-
ory usage of alignments?

In order to be able to generalize the results, these effects are studied for dif-
ferent types of Petri nets with different levels of noise added to traces. Within
the experiment, we considered 768 value combinations of seven parameters. The
alignment related parameters and their values are described in Table 2, whereas
the model related parameters are described in Table 3. For each parameter value
combination, a collection of 64 Petri nets is generated, and 10 traces are gen-
erated from each Petri net. Then, after adding noise, each trace is aligned with
the Petri net. In total, this resulted in computing roughly 500, 000 alignments
within the experiment.

It is important to note that the different parameter combinations (e.g., heuris-
tics, second-order queueing criterion) were not tested using the same set of Petri
nets and traces. To the contrary, they were tested using independent samples
of Petri nets and traces randomly obtained from the same populations of pro-
cesses. In this way we avoid selection bias. Therefore, we consider the absolute
differences and trends described in Section 4.2 as mere indications. For a proper
analysis, in Section 4.3 we evaluated the differences in terms of statistical tests
and not in terms of absolute differences.

4.2 Results

The results of the experiment are scoped in order to provide a straight-forward
answer to the research questions proposed earlier.

Fig. 6 shows the results that relate to Q1 (i.e., the effect of the Heuristic pa-
rameter). Fig. 6a shows the average number of traversed arcs (related to search
efficiency) over increasing levels of loops for two different values of the Heuristic
parameter: LP with lower-bound estimation and LP without lower-bound

estimation. Here, using LP with lower-bound estimation refers to always de-
riving (a potentially approximate) heuristic based on a previously computed
heuristic, i.e. applying both Proposition 1 and Proposition 2. Using LP without
estimation refers to only deriving a heuristic when we are guaranteed that it
is exact, i.e. only when Proposition 1 holds. When no exact heuristic can be
derived an LP is solved immediately. We observe that for increasing levels of
loops, the number of traversed arcs is relatively equal. This is as expected as
the lower-bound does not affect the search efficiency directly, it merely allows
us to, potentially postpone or even prohibit needless solve calls to the under-
lying LP-solver. Fig. 6b shows the average number of queued states (related to
memory usage) over increasing levels of parallelism for the same two values of
the Heuristic parameter: LP with lower-bound estimation and LP without

lower-bound estimation. Again we observe that there is no clear setting that
outperforms the other. Also in this case this is expected as using lower-bound

Table 2: Alignment parameters used in the experiment.
Parameter Type Values

Heuristic (h) Categorical LP without lower-bound estimation

LP with lower-bound estimation

Second-order Queueing Criterion Categorical DFS (sort on minimized h-value)
DFS with certainty priority (sort on minimized h-value)

Transition Restriction Categorical MODEL

LOG

Table 3: Petri net (Pn) and Log generation parameters used in the experiment.
Parameter Type Values

Number of activities (Pn) Numerical 25
50
75

Control-flow Charactersitic (Pn) Categorical Parallelism
Loops

C-f Characteristic Level (Pn) Numerical 0%
10%
20%
30%

Added Noise (Log) Numerical 0%
20%
40%
60%

estimation does not affect the number of states put in the queue. In Fig. 6c
we present computation time.5 For these results, we expect using lower-bound
estimation is beneficial in terms of computation time, i.e. we potentially solve
less LP’s. We do however not observe this. This is most likely explained by the
fact that within the search, markings with an estimated heuristic end up in the
top of the queue, and, LP’s have to be solved anyway. Moreover, in such case,
a marking is potentially reinserted on a lower position in the priority queue.
Hence, we do not observe a clear impact on the global efficiency of the search
by applying heuristic estimation.

The previous results seem to indicate that the effect of heuristic approxima-
tion is negligible. Observe however, that apart from using a DFS-based second
order criterion, we arbitrarily select any marking on top of queue X. Fig. 7 shows
the results that relate to Q2 (i.e., the effect of heuristic approximation on the
Second-order Queueing Criterion parameter). In particular, we compare arbi-
trary top-of-queue selection versus prioritizing markings with an exact heuristic
w.r.t. estimated heuristics. Thus, if two markings m and m′ have the same f and
h value, yet the h value for m is exact whereas that of m′ is not, we prioritize
m over m′.

5 Both experiments ran on the same machine in this instance.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3

T
ra

ve
rs

ed
 A

rc
s

Loop Level

LP with lower-bound estimation

LP without lower-bound estimation

Heuristic

(a) Effect on Traversed Arcs over increasing levels of loops.

0

5000

10000

15000

20000

25000

0 0.1 0.2 0.3

Q
ue

ue
d

St
at

es

Parallelism Level

LP with lower-bound estimation

LP without lower-bound estimation

Heuristic

(b) Effect on Queued States over increasing levels of parallelism.

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6

C
om

pu
ta

ti
on

 T
im

e

Added Noise Level

LP with lower-bound estimation

LP without lower-bound estimation

Heuristic

(c) Effect on computation time over increasing levels of noise.

Fig. 6: The effects of the Heuristic parameter

Fig. 7a shows the average number of visited states (related to search effi-
ciency) over increasing levels of added noise for two different values of the Second-
order Queueing Criterion parameter: DFS and DFS with certainty priority.
We observe that DFS with certainty priority outperforms default DFS. This
is most likely explained by the fact that in case a solution to the state equation,
at some point, actually corresponds to a firing sequence, the search progresses
extremely efficiently. In contract, in such case, using default DFS leads to unnec-
essary exploration of markings that do not lead to a final state. Fig. 6b shows
the average number of queued states (related to memory usage) over increas-
ing levels of parallelism for the same two values of the Second-order Queueing
Criterion parameter: DFS and DFS with certainty priority. As expected we
observe similar results to Fig. 7a.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 0.2 0.4 0.6

V
is

it
ed

 S
ta

te
s

Added Noise Level

DFS

DFS with Certainty Priority

Second-order Queueing Criterion

(a) Effect on Visited States over increasing levels of added noise.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 0.1 0.2 0.3

Q
ue

ue
d

St
at

es

Parallelism Level

DFS

DFS with Certainty Priority

Second-order Queueing Criterion

(b) Effect on Queued States over increasing levels of parallelism.

Fig. 7: The effects of the Second-order Queueing Criterion parameter

Finally, Fig. 8 shows the results that relate to Q3 (i.e., the effect of transi-
tion restriction on the search efficiency). In Fig. 8a we present the effect of the
different types of transition restriction w.r.t. the traversed arcs, for increasing
levels of parallelism. Similarly, in Fig. 8b we present the effects on the number of
queued states, for increasing levels of noise. Interestingly, except for noise level
of 0.6, using model move restriction outperforms log move restriction. This is
as expected since the model part of the synchronous product entails the most
variety in terms of behaviour. Hence, limiting model move scheduling is expected
to have a positive impact on the search performance.

4.3 Statistical Analysis

In this section we analyse the statistical significance of the differences in terms
of search efficiency and memory usage of several values of the three alignment
parameters. We do not assume normal distributions of values, hence, the Kruskal-
Wallis non-parametric test [11] is used. This a one-way significance rank-based
test for multiple samples, designed to determine whether samples originate from
the same population by observing their average ranks. This test does not assume
that the samples are normally distributed.

Regarding research question 1 (Q1) we performed a Kruskal-Wallis test to
assess the significance of the effect of the Heuristic parameter in the num-

0

10000

20000

30000

40000

50000

60000

70000

0 0.1 0.2 0.3

T
ra

ve
rs

ed
 A

rc
s

Parallelism Level

Log Move

Model Move

Transition Restriction

(a) Effect on traversed arcs over increasing levels of parallelism.

0

2000

4000

6000

8000

10000

12000

14000

0 0.2 0.4 0.6

Q
ue

ue
d

St
at

es

Added Noise Level

Log Move

Model Move

Transition Restriction

(b) Effect on Queued States over increasing levels of noise.

Fig. 8: The effects of the Transition Restriction parameter

ber of traversed arcs, visited states and queued states with an alpha of 0.05.
The test indicated that the effect of the Heuristic parameter is not statisti-
cally significant in any of the search efficiency or memory usage measurements
(p− values ≈ 0.5). The same applies for computation time. Regarding research
question 2 (Q2) we performed a Kruskal-Wallis test to assess the significance
of the effect of the Second-order Queueing Criterion parameter on the num-
ber of traversed arcs, visited states and queued states with an alpha of 0.05.
The test indicated that the effect of the parameter on the tree measurements
is statistically significant (p − value < 0.001). Regarding research question 3
(Q3) we performed a Kruskal-Wallis test to assess the significance of the effect
of the Transition Restriction parameter in the number of traversed arcs,
visited states and queued states with an alpha of 0.05. The test indicated that
the effect of the parameter on the number of traversed arcs and queued states
is statistically significant (p − value < 0.001 and p − value = 0.008 respec-
tively) but the effect on the number of visited states is not statistically significant
(p− value = 0.1139)

5 Related Work

A complete overview of process mining is outside the scope of this paper, hence
we refer to [3]. Here, we primarily focus on related work in conformance checking.

Early work in conformance checking uses token-based replay [16]. The tech-
niques try to replay a given trace in a model and add missing tokens if a transition
is not able to fire. After replaying the full trace, remaining tokens are counted
and a conformance statistic is computed based on missing and remaining tokens.

Alignments are introduced in [6]. The work proposes to transform a given
Petri net and a trace from an event log into a synchronous product net, and,
subsequently solve the shortest path problem on the corresponding state space.
Its implementation in ProM may be regarded as the state-of-the-art technique
in alignment computation and serves as a basis for this paper.

In [2,14] decomposition techniques are proposed together with computing
alignments. The input model is split into smaller, transition-bordered, sub-
models for which local alignments are computed. Using decomposition techniques
greatly enhances computation time. The downside of the techniques is the fact
that they are capable to decide whether a trace fits the model or not, rather
than quantifying to what degree a trace fits.

Recently approximation schemes for alignments, i.e. computation of near-
optimal alignments, have been proposed in [18]. The techniques use a recursive
partitioning scheme, based on the input traces, and solve multiple Integer Lin-
ear Programming problems. The techniques identify deviations between sets of
transitions, rather than deviations between singletons (which is the case in [6]).
Finally, alignments have also been defined as a planning problem [12] and have
been recently studied in online settings [20].

6 Conclusion

In this paper we have presented and formalized an adapted version of the A∗

search algorithm used in alignment computation. Within the algorithm we have
integrated a number of parameters that, in previous work [19], have shown to
be most promising in terms of algorithm efficiency. Based on large-scale exper-
iments, we have assessed the impact of these parameters w.r.t. the algorithm’s
efficiency. Our results show that restricting the scheduling of model-move based
transitions of the synchronous product net most prominently affects search ef-
ficiency. Moreover, the explicit prioritization of exactly derived heuristics seems
to have a positive, yet less prominent, effect as well.

Future Work Within this work we have assessed, using large-scale experiments,
the impact of several parameters on the efficiency of computing optimal align-
ments. However, several approximation schemes exist for A∗, e.g. using a scaling
function within the heuristic. We plan to assess the impact of these approxima-
tion schemes on alignment computation as well. We also plan to examine the
use of alternative informed search methods, e.g. Iterative Deepening A∗.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases 31(4), 471–507 (2013)

3. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. Wiley In-
terdisc. Rew.: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine Your Processes
and Not Just Your Data. CoRR abs/1703.03740 (2017)

6. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven
University of Technology, Dept. of Mathematics and Computer Science (Jul 2014)

7. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific Workflows for Process
Mining: Building Blocks, Scenarios, and Implementation. STTT 18(6), 607–628
(2016)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE SSC 4(2), 100–107 (1968)

9. Jouck, T. and Depaire, B.: PTandLogGenerator: A Generator for Artificial Event
Data. In: BPM Demos. vol. 1789, pp. 23–27. CEUR-WS.org (2016)

10. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems (Prelimi-
nary Version). In: ACM Theory of Computing. pp. 267–281. ACM (1982)

11. Kruskal, W.H., Wallis, W.A.: Use of Ranks in One-Criterion Variance Analysis.
Journal of the American Statistical Association 47(260), 583–621 (1952)

12. de Leoni, M., Marrella, A.: Aligning Real Process Executions and Prescriptive
Process Models through Automated Planning. Expert Syst. Appl. 82, 162–183
(2017)

13. Mayr, Ernst W.: An Algorithm for the General Petri Net Reachability Problem.
SIAM J. Comput. 13(3), 441–460 (1984)

14. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-Entry Single-Exit
Decomposed Conformance Checking. Inf. Syst. 46, 102–122 (2014)

15. Murata, T.: Petri nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (Apr 1989)

16. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Inf. Syst. 33(1), 64–95 (2008)

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics and optimization, Wiley (1999)

18. Taymouri, F., Carmona, J.: A Recursive Paradigm for Aligning Observed Behavior
of Large Structured Process Models. In: BPM 2016. LNCS, vol. 9850, pp. 197–214.
Springer (2016)

19. van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning Alingment Computation: An
Experimental Evaluation. In: Proceedings of ATAED 2017. pp. 1–15 (2017)

20. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.:
Online Conformance Checking: Relating Event Streams to Process Models using
Prefix-Alignments. IJDSA (Oct 2017)

	Computing Alignments of Event Data and Process Models

