
POWL: Partially Ordered Workflow Language

Humam Kourani and Sebastiaan van Zelst

Fraunhofer FIT - Data Science and Artificial Intelligence, Sankt Augustin, Germany
{humam.kourani,sebastiaan.van.zelst}@fit.fraunhofer.de

Abstract. Process models are used to represent processes in order to
support communication and allow for the simulation and analysis of the
processes. Many real-life processes naturally define partial orders over
the activities they are composed of. Partial orders can be used as a
graph-like representation of process behavior. On the one hand, par-
tially ordered graph representations allow us to easily model concurrent
and sequential behavior between activities while ensuring simplicity and
scalability. On the other hand, partial orders lack the support for typical
process constructs such as choice and loop structures. Therefore, in this
paper, we present a novel process modeling notation, i.e., the Partially
Ordered Workflow Language (POWL). A POWL model is a partially
ordered graph extended with control-flow operators for modeling choice
and loop structures. A POWL model has a hierarchical structure; i.e,
POWL models can be combined into a new model either using a control-
flow operator or as a partial order. We propose an initial approach to
demonstrate the feasibility of using POWL models for process discovery,
and we evaluate our approach based on real-life data.

Keywords: POWL, process modeling, partial order, process tree

1 Introduction

A process model provides an illustration of a process that supports communica-
tion and allows for the simulation and analysis of the process. Process models
can either be created by hand or discovered using process discovery techniques
[2]. Organizations use information systems to track and record data about the
execution of their processes, and this data is used for the discovery of process
models. Process models might provide insights for organizations and allow them
to analyze their processes in order to detect problems and bottlenecks. This can
help to automate processes and to make better decisions.

Different modeling notations are used to model processes. Petri nets are a
powerful modeling notation widely used to formally describe the behavior of pro-
cesses. A sub-class of Petri nets, called Workflow nets (WF-nets), is usually used
to model business processes. WF-nets adhere to structural quality requirements;
e.g., they define a clear notion for marking the start and end of processes. How-
ever, WF-nets may still suffer from behavioral quality issues. For instance, it is
possible to construct a Workflow net with dead parts that can never be reached.
WF-nets that do not suffer from such quality anomalies are called sound.

https://orcid.org/0000-0003-2375-2152
https://orcid.org/0000-0003-0415-1036


2 H. Kourani and S. van Zelst

A process tree [16] is a hierarchical modeling notation, i.e., a mathematical
tree, in which the leaves represent activities and the internal vertices represent
control-flow operators for modeling behavioral dependencies between their chil-
dren. Process trees represent a strict subset of WF-nets; i.e., any process tree can
be transformed into a WF-net modeling the same behavior, but not all WF-nets
can be modeled as process trees. Process trees are guaranteed to be sound by
construction as they are limited to modeling hierarchical structures.

Partial orders are used as a representation of the execution order of activities
for many real-life processes. In a partial order, some activities may have a strict
order with respect to each other (e.g., activity “a” must happen before activity
“b”), while other activities are concurrent (e.g. activities “b” and “c” may hap-
pen in any order). This reflects the reality of many business processes, where
there may be multiple ways to accomplish a goal. Several partial-order-based
modeling notations have been introduced, e.g., prime event structures [25] and
conditional partial order graphs [22]. These notations allow us to model concur-
rency and sequential dependencies in an efficient and compact manner; however,
none of them properly support cyclic process behavior, which is very common
in practice. Moreover, in a partial order over activities, we assume all activities
to be executed, and thus, modeling a choice is not supported.

On the one hand, process trees fail to model non-hierarchical dependencies
that can be easily described by a partial order. On the other hand, we cannot
model loop or choice structures in a partially ordered graph. We propose a new
modeling notation that combines hierarchical modeling notations with partial
orders. We call our modeling language Partially Ordered Workflow Language
(POWL). A POWL model is a partially ordered graph extended with control-
flow operators for modeling choice and loop structures; i.e, a POWL model is a
hierarchical model that allows for defining partial orders over sub-models.

The remainder of the paper is structured as follows. We start with a moti-
vating example in Section 2. We discuss related work in Section 3, and we briefly
present preliminaries in Section 4. We define POWL models in Section 5, and
we introduce an initial approach for the discovery of POWL models in Section 6.
We evaluate our approach using real-life data in Section 7. Finally, we provide
a brief summary of the paper and propose ideas for future work in Section 8.

2 Motivation

In this section, we motivate our contribution based on a simple example.
We consider a process for purchasing items from an online shop. The user

starts an order by logging in to their account (a). Then, the user simultaneously
selects the items to purchase (b) and sets a payment method (c). Afterward, the
user either pays (d) or completes an installment agreement (e). After selecting
the items, the user chooses between multiple options for a free reward (f). Since
the reward value depends on the purchase value, this step is done after selecting
the items, but it is independent of the payment activities. Finally, the items are
delivered to the user (g). The user may exchange received items. The user can



POWL: Partially Ordered Workflow Language 3

(a) A labeled WF-net.

(b) A process tree.

(c) A POWL model. For simplicity, we
only visualize the transitive reduction of
the partial orders in the model.

Fig. 1: Process models.

return some items (h), and each time items are returned, a new delivery is made
afterward. The WF-net shown in Figure 1a precisely models this process.

A process tree models hierarchical behavioral structures using the control-
flow operators →, ×, ⟲, and +. The → operator models a sequential execution
of blocks; × models an exclusive choice; + models concurrency; ⟲ models a
do-redo loop between two blocks (i.e., the first block is executed once first, and
every time the second block is executed it is followed by another execution of
the first block). Figure 1b shows a process tree modeling the behavior of our
example process. This tree contains a choice of two sub-tree over the same set
of activities (b, c, d, e, and f). Process trees are limited to modeling hierarchical
structures; i.e., without duplicating activities, a process tree cannot precisely
model the dependencies between the activities b, c, d, e, and f .

Figure 1c shows a POWL model precisely modeling the behavior of our ex-
ample process. The outer layer of the hierarchy is a partial order modeling a
sequence between the activity sets {a}, {b, c, d, e, f}, and {g, h}. Another partial
order is used to model the non-hierarchical dependencies between the activity
sets {b}, {c}, {d, e}, and {f}. The process tree operators × and ⟲ are used to
model the choice between d and e and the loop between g and h respectively.

Compared to the process tree and the WF-net, the POWL model has a
simpler structure with fewer nodes and edges (i.e., no places and no duplication
of activities). Moreover, the POWL model shows non-hierarchical dependencies
without duplicating activities, while sub-models can still be easily identified in
the hierarchy and the soundness guarantee is preserved.

3 Related Work

Different modeling notations are used among process mining tools and tech-
niques. We refer to [3] for an overview of process modeling notations in process



4 H. Kourani and S. van Zelst

mining. In [16], Leemans introduce the inductive mining framework and multiple
process discovery approaches implementing it. The approach we propose for the
discovery of POWL models extends the inductive mining framework.

Many ideas for combining different modeling notations have been proposed.
In [4], a hybrid Petri net is defined as a Petri net extended with informal arcs
connecting transitions. In [27], another type of hybrid process models is defined
by combining imperative and declarative modeling languages.

Partial orders are used for data representation and process modeling. An
overview of the use of partial orders in process mining is provided in [17]. In
[21], Mannila et al. propose an approach for the discovery of frequent episodes,
where an episode is defined as a partially ordered set of events. This approach
is adapted in [15] to discover partially ordered sets of activities in event logs.
In [14], the authors create partially ordered representations of activities and
combine them into a workflow graph. In [13], the authors suggest an approach
for generating prime event structures from event logs. A prime event structure
[25] is a partially ordered graph enriched with a conflict relation. This approach
is able to model choice due to the conflict relation; however, loops remain a major
challenge for prime event structures. In [22], the authors present a method for
deriving conditional partial order graphs from event logs. A conditional partial
order graph [23] is a compact representation of a family of partial orders that is
able to model choice structures, but it fails to capture cyclic behavior.

In [26], the authors introduce a flow language (BPEL) that allows for com-
bining web service primitives using advanced control-flow constructs (including
event handlers). BPEL additionally allows for imposing an execution order over
primitives executed in parallel using control links. BPEL is a powerful language
for implementing web services; however, BPEL is very complex for end users and
can be viewed as a programming language rather than a modeling language [5].

4 Preliminaries

In this section, we present basic preliminaries that ease this paper’s readability.
IN={1, 2, 3, ...} denotes the set of natural numbers. We use INodd={1, 3, 5, ...}

to denote the set of odd numbers, and we use INeven={2, 4, 6, ...} to denote the
set of even numbers.

P(X )={X ′⊆X} denotes the powerset of a setX. For n setsX1, ..., Xn, we de-
fine the n-ary Cartesian product as the set X1×...×Xn={(x1, ..., xn) | xi∈Xi for
1≤i≤n}. An n-ary relation over X1, ..., Xn is a subset of the n-ary Cartesian
product X1×...×Xn.

Let X and Y be two sets, and f : X→Y be a function. f is injective if

∀
x,x′∈X

f(x)=f(x′)⇒x=x′. f is surjective if ∀
y∈Y

∃
x∈X

f(x)=y. f is bijective if it

is injective and surjective. We use B(X,Y ) to denote the set of all bijective
functions from X to Y . A multi-set generalizes the notion of a set and allows
for multiple occurrences of the same element. The order of occurrences of the
elements in a multi-set is irrelevant. We define a multi-set M over a set X as
a function M : X→IN∪{0}. We write a multi-set as M=[x1

c1 , ..., xn
cn ] where



POWL: Partially Ordered Workflow Language 5

M(xi)=ci for 1≤i≤n (for x∈X with M(x)=1, we omit the superscript; in case
M(x)=0, we omit x). We use M(X) to denote the set of all multi-sets over X.

A sequence is an ordered collection of elements. We define a sequence over a
set X as a function σ : {1, . . ., n}→X, and we write σ=⟨σ(1), ..., σ(n)⟩. We use
|σ|=n to denote the length of σ and X∗ to denote the set of all sequences over
X. We use σ1·σ2 to denote the concatenation of two sequences σ1 and σ2, e.g.,
⟨x1⟩·⟨x2, x1⟩=⟨x1, x2, x1⟩. We overload notation and, for two sets of sequences
L1 and L2, we write L1·L2={σ1·σ2 | σ1∈L1∧σ2∈L2}. We use σ↑Y to denote the
projection of a sequence σ on a set Y . For example, ⟨x1, x2, x1⟩↑{x1,x3}=⟨x1, x1⟩.

Let ≺⊆X×X be a 2-ary relation over a set X . For (x1, x2)∈X×X, we write
x1≺x2 to denote that (x1, x2)∈≺, and we write x1⊀x2 to denote that (x1, x2)/∈≺.
≺ is a strict partial order if it is irreflexive (i.e., x⊀x for all x∈X ) and transitive
(i.e., if x1≺x2 and x2≺x3, then x1≺x3)1. In the remainder of the paper, we use
the term partial order to refer to a strict partial order. We refer to ρ=(X ,≺) as a
partially ordered set (poset). The language of ρ is defined as the set of sequences
L(ρ)={σ∈X∗ | ∃

f∈B({1,...,|σ|},X)
∀

1≤i≤|σ|
σ(i)=f(i)∧ ∀

1≤j≤|σ|
f(i)≺f(j)⇒i<j}. The

transitive reduction of ≺ is defined as ≺−={(x1, x3)∈≺ | ∄
x2∈X

x1≺x2∧x2≺x3}.

We use Π (X ) to denote the set of all posets over X . Let X and Y be two sets,
ρ=(X,≺) be a poset, and γ : X→Y be a labeling function. The triple ρ′=(X ,≺,
γ) is called a labeled partial order over X and Y . The language of ρ′ is defined as
the set of sequences L(ρ′)={⟨γ(σ(1)), ..., γ(σ(|σ|))⟩ | σ∈L(ρ)}. We use Π (X , Y )
to denote the set of all labeled partial orders over X and Y .

We use Σ to denote the universe of activities, and we use τ /∈Σ to denote the
silent activity (τ is also referred to as the unobservable activity).

5 POWL Language

In this section, we introduce the Partially Ordered Workflow Language (POWL).
We define POWL models, their semantics, and an approach for transforming
POWL models into sound WF-nets.

A POWL model is a partially ordered graph representation of a process,
extended with control-flow operators for modeling choice and loop structures.
We define three types of POWL models. The first type is the base case consisting
of a single activity. For the second type, we use the existing process tree operators
× and ⟲ (defined in [16]) to combine multiple POWL models into a new model.
We use the operator × to model an exclusive choice of n≥2 POWL models and
the operator ⟲ to model a do-redo loop of two POWL models. The third type
of POWL models is defined as a poset of n≥2 POWL models. We interpret
unconnected nodes in a poset to be concurrent and connections between nodes
as sequential dependencies. Figure 1c shows an example POWL model.

Definition 1 (POWL Model). A POWL model is recursively defined as fol-
lows:

1 Irreflexivity and transitivity imply asymmetry ; i.e., if x1≺x2, then x2⊀x1.



6 H. Kourani and S. van Zelst

Fig. 2: Translation of the POWL model shown in Figure 1c into a set of labeled
partial orders. For simplicity, we only show the labels of the transitions. We also
show the language of each partial order (i.e., as a set of activity sequences).

– Any activity a∈Σ∪{τ} is a POWL model.

– Let ψ1 and ψ2 be two POWL models. ⟲(ψ1, ψ2) is a POWL model.

– Let P={ψ1, ..., ψn} be a set of n≥2 POWL models.

• ×(ψ1, ..., ψn) is a POWL model.

• A poset ρ=(P,≺)∈Π (P ) is a POWL model.

We use Ψ to denote the universe of POWL models. We define the execution
semantics for POWL models. Since a partially ordered set of POWL models is
a POWL model, we define the semantics of POWL models in terms of partial
orders as well. However, choice and loop structures cannot be described using a
single partial order. Hence, we define the semantics of a POWL model by trans-
forming it into a set of labeled partial orders over a set of newly generated nodes
(we call them transitions), and we use activities as labels. Figure 2 shows the
result of applying this transformation on the POWL model shown in Figure 1c.

For the base case (i.e., a single activity), the POWL model is transformed
into a single partial order with a transition having the corresponding activity as
a label. For a silent activity, we create an empty labeled partial order. For the
operator ×, the language is defined as the union of the languages of the sub-
models. For the operator⟲, we combine labeled partial orders from the languages
of the sub-models such that the first order is from the do-part and each order
from the redo-part is followed by an order from do-part. When combining these
orders, we replace every transition from the orders of the languages of the sub-
models by a new transition having the same label. For a poset of POWL models,
labeled partial orders are generated by combining orders from the languages of
the sub-models such that the partial order of the sub-models is preserved.

Definition 2 (Partial Order Semantics). Let T be the universe of transi-
tions. Γ : Ψ→P(Π (T , Σ)) is a function recursively defined to transform a POWL
model into a set of labeled partial orders as follows.

– For a∈Σ, Γ (a)={({t}, ∅, (t, a))} where t∈T is a new transition.



POWL: Partially Ordered Workflow Language 7

– Γ (τ)={(∅, ∅, ∅)}.

– Let P={ψ1, ..., ψn} be a set of n≥2 POWL models.

• Γ (×(ψ1, ..., ψn))=
⋃

1≤i≤n
Γ (ψi).

• Γ (⟲(ψ1, ψ2))=⋃
n∈INodd

{(T,≺, γ) | ∃
(T1,≺1,γ1)∈Γ (ψ1̃),...,(Tn,≺n,γn)∈Γ (ψñ),f∈B(

⋃
1≤i≤n

Ti,T )

∀
1≤i≤n,ti∈Ti

(
γĩ(ti)=γ(f(ti))

∧ ∀
1≤j≤n,tj∈Tj

f(ti)≺f(tj) ⇔ ((i=j ∧ ti≺itj) ∨ i<j)
)
}

where T⊆T refers to a set of new transitions and ĩ refers to the trans-

formation of an index i ∈ IN defined as: ĩ =

{
1 if i ∈ INodd,

2 if i ∈ INeven.

• For a poset ρ=(P,≺), Γ (ρ)=
{(T,≺′, γ) | ∃

(T1,≺1,γ1)∈Γ (ψ1),...,(Tn,≺n,γn)∈Γ (ψn)
T=

⋃
1≤i≤n

Ti

∧ ∀
1≤i≤n,ti∈Ti

(
γ(ti)=γi(ti)

∧ ∀
1≤j≤n,tj∈Tj

ti≺′tj ⇔ ((i=j ∧ ti≺itj) ∨ ψi≺ψj)
)
}.

After transforming a POWL model into a set of labeled partial orders, we
can derive the set of activity sequences that can be generated by the model. We
overload notation by defining the language of a POWL model ψ∈Ψ as the set of
activity sequences L(ψ)={σ∈Σ∗ | ∃

ρ=(T,≺,γ)∈Γ (ψ)
σ∈L(ρ)}.

Similar to process trees, POWL models can be recursively transformed into
WF-nets. The transformation approach is schematically presented in Figure 3.
The generated workflow net is guaranteed to be sound; the soundness can be
proven by the composition theorem ([1, Theorem 3]).

6 Discovery of POWL Models

In this section, we demonstrate the feasibility of using POWL models in process
discovery by extending the base inductive miner [16] to mine for POWL models.

6.1 Event Log

Organizations use information systems to track and record information about
the execution of their processes. Data can be stored in different forms. In process
discovery, we assume data to be provided in the form of an event log. We define
an event log L∈M(Σ∗) as a multi-set of activity sequences. A trace σ∈L is a
sequence of activities that represents the execution of a single process instance.



8 H. Kourani and S. van Zelst

Fig. 3: POWL to WF-net converter C. For a WF-net W , we use λ̂(N) to denote
the Petri net that results after removing the source and sink places of W .

Let L∈M(Σ∗) be an event log. ΣL={a∈Σ | ∃
σ∈L,1≤i≤|σ|

σ(i)=a} denotes the

set of activities that occur in L. We use L▷={a∈ΣL | ∃
σ∈L

σ(1)=a} to denote the

set of start activities and L□={a∈ΣL | ∃
σ∈L

σ(|σ|)=a} to denote the set of end

activities. The directly-follows graph (DFG) is a 2-ary relation 7→L⊆ΣL×ΣL that
captures direct successions between activities; i.e., a7→Lb iff ∃

σ∈L,1≤i<|σ|
σ(i)=a∧

σ(i + 1)=b. The eventually-follows graph (EFG) ⇝L⊆ΣL×ΣL captures direct
and indirect successions between activities; i.e., a⇝Lb iff ∃

σ∈L,1≤i<j≤|σ|
σ(i)=a∧

σ(j)=b.
L1=[⟨a, b, c⟩3, ⟨a, b, d⟩2] is an example event log. This event log consists of

five traces with ΣL1={a, b, c, d}, L1▷={a}, L1□={c, d}, 7→L1={(a, b), (b, c), (b,
d)}, and ⇝L1={(a, b), (a, c), (a, d), (b, c), (b, d)}.

6.2 Inductive Miner

The inductive miner [16] is one of the leading approaches in process discovery.
It provides formal guarantees such as soundness, perfect fitness (i.e., it discovers
a model that covers all behavior recorded in the log), and rediscoverability of
certain process structures. There are several variants of the inductive miner (e.g.,
for handling incompleteness or infrequent behavior). In this paper, we extend
the base variant of the inductive miner that assumes a noise-free event log and
returns a model that perfectly fits the input event log.



POWL: Partially Ordered Workflow Language 9

Fig. 4: Two steps of process tree cut detection: → and × cuts.

The inductive miner is a recursive top-down approach. The algorithm tries
to detect a cut , i.e., it tries to detect a behavioral pattern in the directly-follows
graph and a partitioning of the activities according to this pattern. The inductive
miner supports four cuts corresponding to the four operators of process trees,
and it recursively generates a process tree based on the detected cuts.

Definition 3 (Process Tree Cut). Let L∈M(Σ∗) be an event log. A process
tree cut (⊕, A1, ..., An) of L is tuple of a control-flow operator ⊕∈{→,×,+,⟲}
and a partitioning of the activities into n≥2 subsets; i.e., ΣL=A1∪...∪An and
Ai∩Aj=∅ for 1≤i<j≤n.

After detecting a cut, the event log is projected into the different groups of
the partitioning, creating several sub-logs. The same approach is then recursively
applied to all sub-logs until a base case of the recursion is reached. A base case
is defined as an event log whose activity set consists of a single activity. A base
case can be easily transformed into a process tree: either into a single node or
using the operators × or ⟲ to model an optional activity or a self-loop.

For the formal description of the different steps of the inductive miner, we
refer to [16]. Figure 4 shows an example directly-follows graph and two steps
of process tree cut detection based on it. First, a sequence cut (→, {a, b}, {c})
is detected in the initial directly-follows graph; i.e., a sequential dependency
between these groups of activities is discovered. The event log is then projected
into the two groups of activities, creating sub-logs. The second sub-log is a base
case. For the first sub-log, a choice cut (×, {a}, {b}) is detected, and again,
two sub-logs are generated. Both sub-logs are base cases, and the algorithm
terminates returning the process tree →(×(a, b), c).

If neither a base case nor a cut is detected, then the inductive miner invokes a
fall-through function. This function always returns a cut that might correspond
to an under-fitting model (i.e., a model that does not precisely capture the
behavior recorded in the log), but it allows for continuing the recursion. For
example, the fall-through function might return a concurrency cut between an
activity that occurs exactly once in every trace and the rest of the activities.
All steps of the algorithms are fitness-preserving [16]; i.e., all traces in the input
event log are guaranteed to be included in the language of the generated model.



10 H. Kourani and S. van Zelst

Fig. 5: Approach for the discovery of POWL models.

Fig. 6: Partial order cut detection.

6.3 Partial Order Cut

We adapt the inductive miner to discover POWL models instead of process
trees. If the algorithm fails to detect a base case or a process tree cut, we mine
for partial orders before invoking the fall-through function; we generate partial
orders over all possible partitionings of activities, and we validate these orders
using certain rules. If a valid order is found, then the event log is projected on the
partitioning of activities and the recursion continues on the sub-logs; otherwise,
the fall-through function is invoked. An overview of the different steps of our
approach for the discovery of POWL models is shown in Figure 5.

We define a partial order cut as a partitioning of the activities and a par-
tial order over the partitioning. Since a partial order is transitive, we use the
eventually-follows graph instead of the directly-follows graph for the detection of
partial order cuts (we discuss the detection step in Section 6.4). Figure 6 shows
an example eventually-follows graph with a partial order cut detected based
on it. This cut consist of a partitioning of activities P={{a, b}, {c}, {d}} and a
partial order ≺ defined by two ordering relations {a, b}≺{d} and {c}≺{d}.

Definition 4 (Partial Order Cut). Let L∈M(Σ∗) be an event log. A partial
order cut of L is a poset ρ=({A1, ..., An},≺) over a partitioning of the activities
into n≥2 subsets; i.e., ΣL=A1∪...∪An and Ai∩Aj=∅ for 1≤i<j≤n.

Our approach tries to detect a process tree cut before mining for a partial
order. In case a sequence or a concurrency cut is detected, we transform it into



POWL: Partially Ordered Workflow Language 11

a partial order cut since POWL models do not support the operators → and +.
A concurrency is modeled as a poset with an empty ordering relation; i.e., we
transform (+, A1, ..., An) into the poset ({A1, ..., An}, ∅). A sequence is modeled
as poset using the sequential order of the nodes; i.e., we transform (→, A1, ..., An)
into the poset ({A1, ..., An},≺) where Ai≺Aj iff 1≤i<j≤n.

The base inductive miner only detects cuts that preserve perfect fitness [16];
i.e., all traces observed in the event log are guaranteed to be included in the
language of the generated model. Similarly, we ensure perfect fitness for our
approach.

Definition 5 (Fitness-Preserving Partial Order Cut). Let L∈M(Σ∗) be
an event log and ρ=(P,≺) be a partial order cut of L. ρ is fitness-preserving iff
for any A1, A2∈P : A1≺A2⇒{σ↑A1∪A2

| σ∈L}⊆A1
∗·A2

∗.

6.4 Detection of Partial Order Cut

Our approach mines for a partial order cut before invoking the fall-through
function. We use a brute-force approach that generates all possible partitionings
of activities, and for each partitioning, we mine for a valid partial order. We
define a valid partial order cut as a behavioral pattern in the eventually-follows
graphs that corresponds to a partial order over the partitioning of activities.

A valid order contains an ordering edge between two groups of activities if
and only if all activities of the first group are eventually followed by all activities
of the second group and none of the activities of the second group is eventually
followed by an activity of the first group. Moreover, two groups are not connected
through any ordering edges if and only if they are concurrent. We define two
groups to be concurrent if every activity of each group is eventually following all
activities of the other group. Finally, we ensure that groups with no preceding
groups with respect to the order contain start activities and groups with no
succeeding groups with respect to the order contain end activities.

Definition 6 (Valid Partial Order Cut). Let L∈M(Σ∗) be an event log and
ρ=(P,≺) be a partial order cut of L. ρ is valid if the following conditions hold
for all Ai, Aj∈P ; Ai ̸= Aj:

1. (Ai≺Aj ∧Aj⊀Ai) iff ∀
ai∈Ai,aj∈Aj

ai⇝Laj ∧ aj⇝̸Lai.

2. (Ai⊀Aj ∧Aj⊀Ai) iff ∀
ai∈Ai,aj∈Aj

(ai⇝Laj ∧ aj⇝Lai).

3. if ∄
Ak∈P

Ak≺Ai, then Ai∩L▷ ̸=∅.

4. if ∄
Ak∈P

Ai≺Ak, then Ai∩L□ ̸=∅.

The partial order cut shown in Figure 6 is valid. Note that if a valid partial
order cut over a partitioning of activities exists, then it is unique (the first
condition of Definition 6 uniquely defines a relation). Moreover, a valid partial
order cut is fitness-preserving; i.e., the partial order cut detection step is fitness-
preserving.



12 H. Kourani and S. van Zelst

Theorem 1. Let L∈M(Σ∗) be an event log and ρ=(P,≺) be a valid partial
order cut of L. ρ is fitness-preserving.

Proof. Let Ai, Aj∈P with Ai≺Aj . Then, Aj⊀Ai since ≺ is asymmetric.
⇒ ∀

ai∈Ai,aj∈Aj

ai⇝Laj ∧ aj⇝̸Lai.

⇒ ∄
σ∈L,1≤k<l≤|σ|

σ(k)∈Aj ∧ σ(l)∈Ai.

⇒ {σ↑Ai∪Aj
| σ∈L}⊆{σi·σj | σi∈Ai∗ ∧ σj∈Aj∗}=Ai∗·Aj∗. □

6.5 Discussion: Scalability, Fitness, Maximality

Our approach serves as a proof of concept to demonstrate the feasibility of using
POWL models for process discovery. The step of partial order cut detection
needs to be improved in terms of efficiency. We use a brute force approach
for the step of partial order cut detection. Our approach generates all possible
partitionings of activities until a valid order over one of these partitionings is
found. For a large number of activities, this step becomes very time-consuming
unless a partial order cut is detected in an early stage. A possible improvement
for future work is to exploit the eventually-follows graph to dynamically prune
the search space instead of generating all partitionings of activities.

The inductive mining framework guarantees perfect fitness for the generated
models if all steps of the discovery are fitness-preserving [16, Corollary 4.2]. Our
approach extends the base inductive miner (IM) by adding the step of partial
order cut detection. All steps of IM are fitness-preserving [16], and we mine for
valid partial order cuts, which are also fitness-preserving (Theorem 1). Therefore,
our approach is guaranteed to discover fitting models.

Precision is another criterion used to assess the quality of process discovery
approaches. A precise process model is a model that does not allow for behavior
not observed in the log. Process discovery approaches aim at creating a balance
between fitness and precision. As our approach guarantees perfect fitness, our
goal is to maximize precision by discovering a model that allows for less behavior
as possible. In Definition 6, we defined valid partial order cuts by exploiting the
eventually-follows graph. This definition ensures the uniqueness of a valid cut
for a given partitioning of activities. However, a general notion of maximality
among different partitionings is missing. Currently, we only maximize the size
of the partitioning; we generate the partitioning of maximal size first and try
to detect a valid partial order cut over it, then we decrease the size of the
partitioning gradually. For future work, we would like to have a stronger notion
of maximality for valid partial order cuts over different partitionings.

7 Evaluation

We implemented our approach for the discovery of POWL models in PM4Py
(http://pm4py.org/), and we evaluate it using real-life event logs. We compare
our approach (IMP) with the base inductive miner (IM) and a more advanced

http://pm4py.org/


POWL: Partially Ordered Workflow Language 13

Table 1: Evaluation results. We highlighted differences in precision for models
discovered by IMP compared to IM: increases in green and decreases in red.

Event log #Act.
Time (sec) Precision Fitness simplicity

IM IMP IMC SM IM IMP IMC SM IM IMP IMC SM IM IMP IMC SM

BPI 2017 8 1.54 1.22 6.03 8.85 0.37 0.68 0.27 0.56 1 1 1 1 0.67 0.74 0.62 0.65
BPI 2017 12 18.02 5.66 13.79 16.86 0.23 0.34 0.22 0.34 1 1 1 1 0.65 0.68 0.64 0.57

BPI 2018 8 25.79 16.31 11.48 45.14 0.35 0.32 0.29 0.29 1 1 0.99 1 0.65 0.63 0.64 0.54
BPI 2018 12 59.75 112.29 17.25 55.36 0.2 0.21 0.27 0.19 1 1 0.98 1 0.61 0.63 0.63 0.48

BPI 2019 8 2.93 2.95 8.5 13.48 0.62 0.78 0.78 0.73 1 1 1 1 0.64 0.67 0.67 0.54
BPI 2019 12 5.56 3.3 13.15 13.46 0.55 0.7 0.7 0.7 1 1 1 1 0.64 0.64 0.65 0.49

Dom. Decl. 8 0.08 0.26 0.5 0.57 0.4 0.4 0.39 0.9 1 1 1 1 0.65 0.66 0.65 0.57
Dom. Decl. 12 0.13 38.16 0.98 0.61 0.5 0.54 0.37 0.84 1 1 1 1 0.61 0.67 0.62 0.59

Int. Decl. 8 0.05 0.08 0.4 0.54 0.5 0.53 0.59 0.66 1 1 1 1 0.67 0.71 0.69 0.54
Int. Decl. 12 0.12 0.31 1.6 0.68 0.47 0.51 0.53 0.56 1 1 0.98 0.89 0.65 0.69 0.69 0.38

Travel Permit 8 0.17 0.2 1.05 1.58 0.51 0.51 0.68 0.56 1 1 0.96 0.92 0.67 0.67 0.71 0.44
Travel Permit 12 0.45 280.02 0.79 0.91 0.33 0.35 0.6 0.41 1 1 0.95 0.99 0.65 0.67 0.68 0.49

Travel Costs 8 0.04 0.19 0.12 0.19 0.43 0.39 0.35 0.55 1 1 1 0.99 0.63 0.68 0.67 0.56
Travel Costs 12 0.15 276.87 0.22 0.28 0.23 0.35 0.24 0.54 1 1 1 0.83 0.58 0.68 0.63 0.38

Pay. Request 8 0.05 0.19 0.27 0.43 0.75 0.75 0.29 0.91 1 1 0.9 1 0.63 0.68 0.66 0.55
Pay. Request 12 0.09 41.44 0.5 0.5 0.49 0.49 0.38 0.82 1 1 1 1 0.6 0.67 0.64 0.55

Sepsis 8 0.08 0.1 0.07 0.21 0.51 0.51 0.51 0.42 1 1 1 1 0.64 0.65 0.64 0.5
Sepsis 12 0.2 0.14 0.16 0.3 0.34 0.35 0.4 0.31 1 1 1 1 0.64 0.65 0.63 0.47

Fine 8 0.49 0.71 9.21 5.35 0.76 0.76 0.76 0.91 1 1 1 1 0.66 0.67 0.68 0.56
Fine 11 0.69 7.13 17.52 5.49 0.58 0.58 0.78 0.92 1 1 1 1 0.62 0.63 0.64 0.51

Hosp. Billing 8 0.59 0.69 9.09 10.67 0.78 0.78 0.6 0.9 1 1 1 1 0.67 0.67 0.64 0.56
Hosp. Billing 12 0.99 1.55 14.17 5.61 0.6 0.6 0.46 0.86 1 1 1 1 0.65 0.66 0.62 0.53

variant of the inductive miner that handles incompleteness (IMC) [16]. We addi-
tionally apply another state-of-the-art discovery approach: the split miner (SM)
[6]. Since both IM and IMP guarantee perfect fitness, we set the filtering thresh-
old of the split miner to 0; for the other parameters, we use the default values.

We transform the discovered models into WF-nets, and we assess their quality
using three conformance-checking metrics implemented in PM4Py: fitness [7],
precision [24], and simplicity [8]. Fitness quantifies how well the discovered model
reproduces the behavior recorded in the event log. Precision quantifies the degree
to which the model is restricted to the behavior recorded in the event log. The
simplicity metric implemented in PM4Py evaluates a model as simple if it has a
low average degree of arcs (i.e., a low number of arcs per place or transition).

We use multiple real-life event logs for the evaluation. We use an event log
that records sepsis cases from a hospital [19], an event log of a system managing
road traffic fines [18], an event log for a hospital billing system [20], BPI Chal-
lenge 2017 [9], BPI Challenge 2018 [12], BPI Challenge 2019 [10], and the five
event logs of the BPI Challenge 2020 [11]: Request For Payment, Prepaid Travel
Costs, Travel Permit Data, International Declarations, and Domestic Declara-
tions. We filter the event logs to only keep the most frequent activities using two
values for this filter: 8 and (at most) 12 activities.

The results of the evaluation are shown in Table 1. We report the time re-
quired for discovering each model and the obtained conformance-checking scores.

On the one hand, IMP led to better time performance than the other ap-
proaches in some cases (e.g., BPI Challenge 2017). On the other hand, IMP was
more time-consuming in other cases. Compared to IM, the time increased from
0.17 seconds to 0.2 seconds for the travel permit log with 8 activities and from
0.45 seconds to 280.02 seconds for the log with 12 activities. This shows how in-
creasing the number of activities can dramatically worsen the time performance.



14 H. Kourani and S. van Zelst

These results were expected as discussed in Section 6.5. IMP serves as proof of
concept, and it needs to be improved in terms of scalability in future work.

As expected, both IM and IMP led to perfectly fitting models, while for
IMC and SM, we observe lower fitness values in some cases. As discussed in
Section 6.5, IMP preserves the fitness guarantee of IM as the step of partial
order cut detection is fitness-preserving.

In general, the three variants of the inductive miner led to simpler models
than the split miner. Our approach achieved the highest simplicity score on av-
erage (0.67), while SM achieved the lowest score on average (0.52). Note that
these scores only evaluate the simplicity of the discovered models after trans-
forming them into WF-nets; i.e., we are not evaluating the simplicity of the three
different types of models (IM and IMC produce process trees [16], IMP produces
POWL models, and SM produces BPMN models [6]).

We observe that precision varies among the different event logs. On the one
hand, SM led to significantly higher precision values and lower simplicity values
compared to the inductive miner in many cases (e.g., the fine management logs).
On the other hand, we observe cases where the inductive miner performed better
in terms of both precision and simplicity (e.g., the sepsis cases log). By comparing
the three variants of the inductive miner with each other, we observe that IMP

led to the highest precision on average. In Table 1, we highlighted differences
in precision between the models discovered by IM and IMP as IMP extends IM
aiming at improving precision.

In general, our approach led to more precise models than IM. For some of
these cases, this is due to the handling of incompleteness. Our approach uses
the eventually-follows graph instead of the directly-follows graph for detecting
partial order cuts. This design decision helps to handle incompleteness in the
event log since the directly-follows graph is a subset of the eventually-follows
graph; i.e., if the event log is incomplete and some connections are missing in the
directly-follows graph, these connections might still be present in the eventually-
follows graph. For instance, the precision of the BPI Challenge 2019 log with 12
activities increased from 0.55 to 0.7. However, the POWL model discovered by
IMP does not contain any structures that cannot be captured by a process tree.
It models the same behavior of the process tree discovered by IMC.

Figure 7 shows the POWL model discovered by IMP for the BPI Challenge
2017 event log with 8 activities. The POWL model achieved a precision of 0.68
compared to 0.37 achieved by the model discovered by the base inductive miner.
IMP discovers local dependencies between activities IM fails to discover. For
example, IMP discovered a simple sequential relation between the activities
“A Concept” and “A Accepted”. This simple sequence cannot be discovered
by IM as it only represents a local dependency; i.e., it does not correspond to a
global process tree cut covering all activities. The POWL model shows a non-
hierarchical structure that cannot be captured using a process tree (i.e., the
partial order over {A Concept}, {A Accepted}, {O Create Offer, O Created},
{W Complete application}, and {W Call after offers, A Complete}).



POWL: Partially Ordered Workflow Language 15

Fig. 7: POWL model discovered for the BPI Challenge 2017 event log.

Although IMP led to more precise models compared to IM in most cases, we
observe some exceptions. For instance, for the BPI Challenge 2018 event log with
8 activities, the precision decreased from 0.35 to 0.32. This is an example where
invoking the fall-through function led to better results than detecting a partial
order. In order to continue the recursion, the fall-through function returned a
concurrency cut between an activity that occurs in every trace at most once and
the rest of the activities.

To sum up, our evaluation shows that our approach discovers structures that
cannot be captured by a process tree, and it leads to high precision and simplicity
in general. However, the approach needs to be improved in terms of scalability.

8 Conclusion

Different modeling notations are used to model processes. Partial orders pro-
vide a compact representation of concurrent systems, but they are not able to
represent cyclic or choice behavior. Process trees use control-flow operators for
modeling processes as mathematical trees, but they are limited to hierarchical
structures. A POWL model is a partially ordered graph representation, extended
with control-flow operators for modeling choice and loop. POWL models can be
converted into sound Workflow nets. We proposed an approach to demonstrate
the feasibility of using POWL models in process discovery. We evaluated our
approach using real-life event logs, and the evaluation showed that our approach
is able to discover dependencies that cannot be captured by a process tree.

We propose multiple ideas for future work. First, our approach needs to be
improved in terms of scalability. Moreover, it is possible to develop other types of
approaches for the discovery of POWLmodels. Our approach is based on the base
inductive miner; i.e., it is a top-down recursive approach. Developing a bottom-
up approach and comparing it with the top-down approach is an interesting
idea for future work. Moreover, we can develop a discovery approach for POWL
models that exploits life-cycle information in event logs where each event has



16 H. Kourani and S. van Zelst

a duration (i.e., each event has a start timestamp and an end timestamp). We
usually assume event logs to be totally ordered; i.e., we define a trace as a
sequence of activities. However, event logs might also be partially ordered. We
suggest developing an approach for the discovery of POWL models from partially
ordered event logs. Finally, the idea of combining different modeling notations
to create new types of process models is not restricted to POWL models. This
idea can be applied to combine other types of process models.

References

1. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: Business Process Management, Models, Techniques,
and Empirical Studies. LNCS, vol. 1806, pp. 161–183. Springer (2000)

2. van der Aalst, W.M.P.: Business process simulation revisited. In: Enterprise and
Organizational Modeling and Simulation - 6th International Workshop, held at
CAiSE 2010. Selected Papers. LNBIP, vol. 63, pp. 1–14. Springer (2010)

3. van der Aalst, W.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

4. van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.,
Kourani, H.: Discovering hybrid process models with bounds on time and complex-
ity: When to be formal and when not? Information Systems 116, 102214 (2023)

5. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N., Verbeek,
H.M.W., Wohed, P.: Life after BPEL? In: Formal Techniques for Computer Sys-
tems and Business Processes, EPEW 2005 and WS-FM 2005, Proceedings. LNCS,
vol. 3670, pp. 35–50. Springer (2005)

6. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

7. Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: Increasing speed
while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Carmona,
J. (eds.) Proceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data, Satellite event of Petri Nets 2019 and ACSD 2019.
CEUR Workshop Proceedings, vol. 2371, pp. 87–103. CEUR-WS.org (2019)

8. Blum, F.R.: Metrics in process discovery. Tech. Rep. TR/DCC-2015-6, Computer
Science Department, Universidad de Chile, Chile (2015)

9. van Dongen, B.: BPI Challenge 2017 (2017)
10. van Dongen, B.: BPI Challenge 2019 (2019)
11. van Dongen, B.: BPI Challenge 2020 (2020)
12. van Dongen, B., Borchert, F.: BPI Challenge 2018 (2018)
13. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: Event structures as a

unified representation of process models and event logs. In: Application and The-
ory of Petri Nets and Concurrency - 36th International Conference, Proceedings.
LNCS, vol. 9115, pp. 33–48. Springer (2015)

14. Golani, M., Pinter, S.S.: Generating a process model from a process audit log.
In: Business Process Management, International Conference, Proceedings. LNCS,
vol. 2678, pp. 136–151. Springer (2003)

15. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: Data-Driven Process Discovery and Analysis - 4th International Symposium,
Revised Selected Papers. LNBIP, vol. 237, pp. 1–31. Springer (2014)



POWL: Partially Ordered Workflow Language 17

16. Leemans, S.J.J.: Robust Process Mining with Guarantees - Process Discovery, Con-
formance Checking and Enhancement, LNBIP, vol. 440. Springer (2022)

17. Leemans, S.J., van Zelst, S.J., Lu, X.: Partial-order-based process mining: a survey
and outlook. Knowl Inf Syst (2022)

18. de Leoni, M.M., Mannhardt, F.: Road Traffic Fine Management Process (2015)
19. Mannhardt, F.: Sepsis Cases - Event Log (2016)
20. Mannhardt, F.: Hospital Billing - Event Log (2017)
21. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event

sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)
22. Mokhov, A., Carmona, J.: Event log visualisation with conditional partial order

graphs: from control flow to data. In: Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data, Satellite event of Petri
Nets 2015 and ACSD 2015. CEUR Workshop Proceedings, vol. 1371, pp. 16–30.
CEUR-WS.org (2015)

23. Mokhov, A., Yakovlev, A.: Conditional partial order graphs: Model, synthesis, and
application. IEEE Trans. Computers 59(11), 1480–1493 (2010)

24. Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In:
Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010, Hoboken, NJ, USA. Proceedings.
LNCS, vol. 6336, pp. 211–226. Springer (2010)

25. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981)

26. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2-3), 162–198 (2007)

27. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: On the Move to Meaningful Internet Systems: OTM
2016 Conferences - Confederated International Conferences: CoopIS, C&TC, and
ODBASE 2016, Proceedings. LNCS, vol. 10033, pp. 531–551 (2016)


