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Abstract. The information systems used in companies store event data
describing the historical execution of the processes they support. Pro-
cess mining covers the automated analysis of such data, generating in-
sights that may ultimately lead to process improvement. A core branch
of process mining is process discovery, dealing with event-data-based au-
tomated discovery of process models. In practice, the same activity may
often be executed in a significantly different context, e.g., in a vaccina-
tion program, multiple vaccine doses are typically provided at different
points in time. Process discovery algorithms assume that all executions
of the same activity are to be mapped onto the same modeling element.
Consequently, the presence of repeated activity executions under differ-
ent contexts typically leads to underfitting discovered process models.
To this end, activity label-splitting algorithms have been proposed to
relabel the recordings of the same activity occurring in significantly dif-
ferent execution contexts. Yet, the state-of-the-art label-splitting algo-
rithm adopts a trace-level-mapping strategy, yielding inferior results in
the presence of loop constructs and infeasible computation time. There-
fore, this paper proposes a novel label-splitting preprocessing technique
that overcomes these issues. Our experiments confirm that our newly
proposed label-splitting algorithm outperforms the state-of-the-art.

Keywords: Process mining · Process discovery · Label-splitting.

1 Introduction

Most business processes executed in companies in various domains are supported
by multiple, often interconnected, information systems. Among storing docu-
ments and artifacts, many such information systems, e.g., Enterprise Resource
Planning (ERP) systems and Manufacturing Execution Systems (MES), store a
digital representation of the historical execution of the processes they support.
Such data is referred to as event data. The intrinsic value of event data is con-
firmed by the successful application of event-data-driven analysis techniques in
various domains, i.e., referred to as process mining [1].
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In process mining, process discovery, which aims at the automated discovery
of business process models describing the process as recorded, is one of the most
prominent tasks [1]. Many process discovery algorithms have been proposed and
studied in the literature [5]. While the discovery algorithms have made consid-
erable progress and shown their values in real life, many other challenges remain
largely unsolved. One of these challenges is the accurate handling duplicated
tasks [1,19,5].

A duplicated task is manifested as a process task executed at different stages
of the process, representing different activities. For example, the patient con-
sultations at the beginning and end of a treatment trajectory are both called
consultations but refer to different activities. When modeling such a process,
a process analyst typically uses two task nodes to represent such duplicated
tasks. However, when such tasks are executed, the corresponding events are
recorded with the same label, i.e., consultation. Most existing discovery algo-
rithms then consider these events to belong to the same activity and discover
an overgeneralized loop to capture the behavior in the event log. To tackle this
challenge, activity label-splitting techniques have been proposed [19,23]. Label-
splitting techniques aim to detect the groups of events that refer to the same
activity but are executed in a different context and, therefore, should be treated
by the process discovery algorithm as conceptually different activities.

It is shown that label-splitting algorithms can significantly improve the qual-
ity of subsequently discovered process models [19], yet a relatively limited amount
of work has been done in the area. The label-splitting technique proposed in [19]
has shown that splitting the labels can lead to discovering more precise process
models in some cases. However, the proposed approach uses a brute-force algo-
rithm to find an optimal mapping of the events with the same labels between
different traces, also called trace mapping, to detect candidate events for label-
splitting. When two events have the same label in every trace in the log, this
approach has to search 2N possible mappings to find an optimal solution. As a
result, the technique has a high time complexity (thus a poor running time) and
has difficulties handling processes with loops. Other techniques use additional
contextual information (such as the timestamps of the events) [23]. As a result,
these approaches cannot handle an arbitrary log.

Therefore, we propose a novel label-splitting framework that is robust to
looping behavior executed in the process and can handle real-life logs. The key
artifact of our proposal is an event graph connecting all events that describe
the same label and are candidates for label-splitting. Several techniques can
be applied to detect clusters of equally labeled events with similar contexts,
e.g., community detection [13]. The proposed event graph ignores the process
instances in which the events occur and focuses on the execution context of the
events (e.g., preceding and succeeding activities); the events of the same loop
occur in a similar context and, thus, will be clustered automatically. As a result,
the approach can handle event logs from the processes with loops. We conducted
an extensive range of quantitative experiments to assess our proposed framework.
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The results of our experiments show that our proposed approach consistently
outperforms the state-of-the-art label-splitting preprocessing method.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work. Section 3 presents background concepts and the notation used in
this paper. We present our main contribution in Section 4. In Section 5, we
present the evaluation of our approach. Finally, Section 6 concludes this work.

2 Related Work

In this section, we discuss related work. We primarily focus on label-splitting. For
a general overview of process mining, we refer to [1]. For an overview of existing
process discovery algorithms, we refer to [5]. In terms of event data preprocessing
techniques, next to label-splitting, we primarily identify two significant fields of
study, i.e., outlier and noise detection [14], and event abstraction [27].

Various label-splitting methods exist that refine imprecise labels as a pre-
processing step. Lu et al. [19,18] propose a label-splitting algorithm that refines
event labels based on their context similarity by creating a mapping between
process traces. The goal is to maximize the pairs of mapped events with sim-
ilar contexts. For this, they use a cost function based on various aspects like
neighbors of the events and location of the events in the trace is used. However,
mapping complete traces cannot express the relationship between events within
the same trace and leads to various issues in practice, most significantly for
traces with loops. Our approach proposes to use an event graph that connects
all events of the same label. This allows our approach to cluster the events of a
loop and, thus, tackle this limitation.

Tax et al. [23] propose using the timestamps of events to perform label-
splitting. The assumption is that when the events occurred at different times
of the day, this may suggest the events carry a different meaning (e.g., eating
during the morning versus eating during the evening). This leads to good results
on the event logs (such as smart devices) that satisfy this assumption, yet, it does
not apply to arbitrary process event logs, as this method requires a correlation
between the time and execution of events in different contexts. Our approach
does not have such assumptions and is generally applicable to any event log. In
addition, our approach can be extended to also take additional context (such as
timestamps) into account as features, which are used as input for clustering or
community detection algorithms.

Another type of approach to label-splitting is the extension of existing pro-
cess discovery algorithms. For example, Fodina [7] is an extension of the heuristic
miner algorithm [25] that introduces a simple label-splitting based on the local
context of events. There has also been an effort to extend the α-algorithm [4]
to enable it to deal with duplicate tasks [17]. Another class of process dis-
covery algorithms that can apply label-splitting are genetic process discovery
algorithms [2,9]. This class of algorithms uses an evolutionary computational
paradigm to gradually learn process models, naturally supporting adding sev-
eral modeling elements with the same label. Some region-based process mining
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algorithms also support label-splitting [3,10]. However, the emphasis of label-
splitting in these algorithms is to enable the discovered model to describe all
observed behavior in the input data. Consequently, these approaches need to
take more contexts into account, which can lead to excessive label refinement.
Another technique suggested by Vazquez-Barreiros et al. [24] discovers duplicate
tasks in an already mined heuristic net or causal net. Finally, Yang et al. [26]
use hidden Markov models to discover workflow models and split states during
discovery. A general downside of all methods that integrate label-splitting within
process discovery is that these methods are tied to their respective discovery al-
gorithms and can not be used as a general preprocessing method. In contrast,
our approach is independent of any discovery algorithm and can be seen as a
preprocessing step of the event log.

3 Background

This section presents the background concepts used in this paper. After briefly
presenting notational conventions, we introduce the notion of event data.

A sequence σ of length n over a set X is a function σ : {1, . . .n}→X. We write
σ=⟨x1, x2, . . .xn⟩, where xi=σ(i) for 1≤i≤n. The length of a sequence σ is de-
noted as |σ|. Given 1≤i<j≤|σ|, we let sub(σ, i, j)=⟨σ(i), . . ., σ(j)⟩, i.e., the strict
sub-sequence of σ ranging form index i to j. We let X∗ denote the set of all pos-
sible sequences over X. Given a sequence σ∈X∗, we let elem(σ)={x|1≤i≤|σ| ∧
(σ(i)=x)} to return all elements in σ.

We define an event log as follows. Consider Table 1, presenting a simplified
example of an event log. Each row refers to an event, recording the execution
of an activity, e.g., the first row represents a recording of the “Open Expense
Report” activity. Each event has a unique event identifier. Similarly, each event
has a unique case identifier, representing the process instance for which the
activity was executed. Finally, a timestamp is recorded, recording the activity
execution time. We formally the notion of event logs as follows.

Definition 1 (Event, Case, Event Log). Let C denote the universe of cases,
let E denote the universe of events, and let Σ denote the universe of activity
labels. An event e∈E is a data tuple, recording the historical execution of an
activity. We assume that at minimum, an event describes:
– An activity attribute, accessed by πact(e)∈Σ,
– A timestamp attribute, accessed by πtime(e)∈R+.4

A case c∈C records an instance of the process and describes a collection of events,
i.e., πevents(c)⊆E. An event log L is a collection of cases, i.e., L⊆C.

We write ĉ as a shorthand notation for πevents(c)⊆E . In the context of this pa-
per, we assume that a total order is deterministically available for a case, i.e.,
seq(c)∈ĉ∗, s.t., elem(seq(c))=ĉ, |seq(c)|=|ĉ| and:
∀1≤i<j≤|seq(c)| (πtime(seq(c)(i))≤πtime(seq(c)(j))). We also assume that events
occur uniquely in one case in an event log, i.e., ∀c, c′∈L(ĉ∩ĉ′ ̸=∅ =⇒ c=c′).
4 We assume that, for t0,∆∈R+, every timestamp t can be represented as t=t0+∆.
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Table 1: Simple event log describing recorded process behavior. The event log
captures at what point in time an activity was executed for a specific case.

Event ID Case ID Activity Timestamp
1 1 Open Expense Report 26-10-2022 9:40 AM
2 1 Attach Receipts 26-10-2022 9:42 AM
3 1 Send Report 26-10-2022 9:43 AM
4 2 Open Expense Report 26-10-2022 10:21 AM
5 2 Attach Receipts 26-10-2022 10:27 AM
6 2 Write Supporting Motivation 26-10-2022 10:35 AM
7 2 Send Report 26-10-2022 10:42 AM
8 2 Receive Revision Request 26-10-2022 5:25 PM
9 2 Write Supporting Motivation 27-10-2022 9:45 AM
10 2 Send Report 27-10-2022 9:53 AM
11 1 Receive Confirmation 27-10-2022 11:13 AM
12 1 Close Report 27-10-2022 11:14 AM
13 2 Receive Confirmation 28-10-2022 11:18 AM
14 3 Open Expense Report 29-10-2022 11:22 AM
15 3 Attach Receipts 29-10-2022 11:28 AM
16 3 Write Supporting Motivation 29-10-2022 11:36 AM
17 3 Send Report 29-10-2022 11:43 AM
18 3 Receive Revision Request 29-10-2022 3:20 PM
19 3 Write Supporting Motivation 31-10-2022 3:55 PM
20 3 Send Report 31-10-2022 4:27 PM
21 3 Receive Confirmation 31-10-2022 5:16 PM
...

...
...

...

4 Event-Graph-Based Label-Splitting

In this section, we present our novel proposed framework for activity label-
splitting. In Section 4.1, we present a motivating example, which we use as a
running example in the remainder of the paper. In Section 4.2, we present an
overview of our proposed framework. Section 4.3 presents the construction of the
event graph, i.e., the foundational artifact of our approach. Section 4.4 briefly
discusses graph clustering. We present the relabeling mechanism in Section 4.5.

4.1 Motivating Example

To motivate our proposed approach and to ease the readability of this paper,
we explain the steps of our framework using a motivating running example. We
consider a (simplified) reimbursement process. Consider Fig. 1a, in which we
depict a process model (using the BPMN modeling formalism) describing the
reimbursement process. Firstly, a report is created. Then, receipts are attached
to the report. If the total sum of the reimbursement claim is below $500, the
report is directly submitted. Subsequently, the report is automatically accepted,
and a confirmation is sent out to the applicant. If the sum of the claim is above
$500, the applicant writes a supportive motivation, after which the report is
submitted. The applicant either receives a confirmation or a revision request.
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(a) Ground truth process model (in BPMN modeling formalism)
describing the normative behavior of the running example pro-
cess. Our proposed approach successfully leads to rediscovery of
the ground truth model.

(b) Process model automatically discovered on the running ex-
ample event data, using the Inductive Miner algorithm [15].

(c) Process model automatically discovered on the running exam-
ple event data, using the Inductive Miner algorithm [15] in com-
bination with the state-of-the-art label-splitting algorithm [19].

Fig. 1: Example used in this paper, describing a simple compensation request.
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Fig. 2: Schematic overview of the proposed approach. The event log is converted
to an event graph in which equally-labeled similar events are connected. Commu-
nity detection is applied to detect events that depict similar behavioral contexts.

The applicant must revise and resubmit the supporting motivation if a revision
request is received. Table 1 captures three executions of the process described.

State-of-the-art approaches for process discovery inaccurately handle event
data describing the behavior of Fig. 1a. When applying the Inductive Miner al-
gorithm [15] on a noise-free event log based on the model in Fig. 1a, we obtain
the process model depicted in Fig. 1b. Since the discovery algorithm maps all
occurrences of the send report activity on the same model element, the model
is severely underfitting, i.e., it describes many more execution sequences than
the process’s reference model. When applying the state-of-the-art label-splitting
algorithm [19], we obtain the process model depicted in Fig. 1c.5 Whereas the
model discovered by applying the label-splitting algorithm of [19] is language
equivalent to the ground truth model (cf. Fig. 1a), it does have conceptual qual-
ity issues. The model falsely suggests that two distinct “Send Report” activities
are possible after writing the supporting motivation, yielding a different out-
come. As modeled in the ground truth model, the decision point of confirmation
or requiring another revision is made after receiving the report. In contrast,
our newly proposed algorithm can, when splitting the “Send Report” activity,
rediscover rediscover the ground truth model (cf. Fig. 1a).

4.2 Overview

This section presents an overview of our proposed framework for activity label-
splitting. Consider Fig. 2, in which we schematically present the basic steps of
our framework. The input of our framework is an event log. We assume that
some activity label a∈Σ, i.e., we aim to split label a, has been determined in
advance by a domain expert. As a first step, the event log is converted into an
event graph where all events e in the log that describe activity a (πact(e)=a)
form the vertices of the graph. If they are significantly similar, given some arbi-
trary context, two vertices are connected. Generally, the context and similarity
5 The default implementation of the algorithms falsely splits the event data on “Write

Supporting Motivation”. The model in Fig. 1c is closest to the ground truth model
(Fig. 1a) and is obtained by using a custom parameterization of the algorithm.
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7 10

17 20

Succeeding Activity:
Receive Revision Request

Succeeding Activity:
Receive Revision Request

Succeeding Activity:
Receive Confirmation

Succeeding Activity:
Receive Confirmation

Fig. 3: Example event graph, based on the running example event log (cf. Ta-
ble 1). The vertices contain the event ids, and the similarity context used is the
succeeding activity within the case that the event belongs to. Vertices 7 and 17
have a similar context. Similarly, vertices 10 and 20 have a similar context.

function are parameters of the approach. Examples include, among others, the
resource executing the event, the activities preceding and succeeding the event,
etc. We apply graph clustering on the graph to detect groups of equally labeled
events that occur in a different context. All events in the same cluster obtain a
“fresh” activity label.

4.3 Event Graph Construction

In this section, we describe the first step of our approach, i.e., event graph con-
struction. Events that have the same activity label, i.e., e, e′∈E s.t. πact(e)=πact(e

′),
form the vertices of the graph. Two events vertices are connected if, for some
context-based symmetrical similarity function, their corresponding events are sig-
nificantly similar. Generally, such a similarity function can be any contextual
data feature recorded for the events, e.g., the two activities may be executed by
the same resource, the two activities may require the same input document, etc.
From a formal perspective, we require the similarity metric to be symmetric.

As a simple example, reconsider Table 1. Observe that the activities “Write
Supporting Motivation” and “Send Report” are executed twice for both case 2
and case 3. We decide to apply label-splitting on the “Send Report” activity,
hence, the events describing said activity form the vertices in the event graph
(events 7, 10, 17, and 20). For simplicity, assume that we use each event’s direct
succeeding activity as a context (within the same case). For events 7 and 17,
followed by events 8 and 18, respectively, the succeeding activity is “Receive
Revision Request”. Similarly, events 10 and 20 are followed by events 13 and
21, respectively, which both describe the “Receive Confirmation” activity. If we
only connect those events in the event graph with the exact same context, i.e.,
succeeding activity, we obtain the graph depicted in Fig. 3. We define the notion
of an event graph as follows.

Definition 2 (Event Graph). Let V⊆E be a collection of events. Let φ : E×E→
[0, 1] be a context-based symmetric similarity function on the universe of events
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and let ts∈[0, 1]. We let G(φ,ts)=(V,E) be an undirected graph, referred to as the
(φ, ts)-driven event graph of L, where {v, v′}∈E iff φ(v, v′)≥ts.

The exact characterization of the similarity function φ is a parameter of our
approach, i.e., it depends on the attributes available in the event data as well as
the nature of the process and its corresponding logging. Hence, we refrain from
providing formal definitions of instantiations of φ, yet, since we assume that at
least an activity and timestamp attribute are available, we provide an example
instantiation based on control flow. Additionally, note that, in certain scenarios,
the φ-value can be used as a weight function on the edges of the event graph.

Let σ=seq(c) for some c∈C denote a sequence of events (recall seq(c)∈E∗), let
1≤i≤|σ| and let k∈N. The sequence sub(σ,max(1, i−k),max(1, i−1)) describes
the preceding k events of the ith event in σ. Similarly, sub(σ,min(i+1, |σ|),
min(i+k, |σ|)) describes the succeeding k events of the ith event in σ. Clearly,
given some c′∈C with σ′=seq(c′) and 1≤j≤|σ′|, we compare the k preceding
events of event σ(i) in σ with the k preceding events of event σ′(j) in σ′, e.g.,
by computing the edit distance between sub(σ,max(1, i−k),max(1, i−1)) and
sub(σ′,max(1, j−k),max(1, j−1)). The same can be applied for the k succeeding
events. Both distances can subsequently normalized and a weighted average can
be computed. Several variations of the above scheme are possible. For example,
the event graph in Fig. 3 uses k=1 and ignores the preceding activities.

4.4 Graph Clustering

The second step of our approach entails global graph clustering [21]. Any al-
gorithm that computes a partitioning of the vertices of an undirected graph
based on the graph’s topological structure is applicable. For example, connected
components is used by the approach of [19]. However, we found that commu-
nity detection leads to better results which is why we decided to focus on this
clustering method.

Community Detection; Community detection algorithms [13] detect clusters
in which the intra-connectivity of vertices of a cluster is high, and the inter-
connectivity to vertices in a different cluster is low. Applying community detec-
tion allows for detecting clusters, even if the graph is connected. For example,
consider the schematic example graph in Fig. 2. The graph itself is connected,
yet, two separate communities are identifiable.

Observe that, in the context of our running example, most clustering tech-
niques find the two vertex clusters visualized in Fig. 3, i.e., events 7 and 17, and,
events 10 and 20 are grouped together.

4.5 Relabeling

In the final step of our framework, we relabel the events that form the clusters
in the event graph. In particular, all events belonging to the same cluster ob-
tain the same activity label. Let G(φ,k)=(V,E) be a (φ, k)-driven event graph of
some event log L, similarity function φ, and threshold k. Further, assume that a
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clustering algorithm of choice resulted in a partitioning V={V1, V2, . . ., Vn}. To
relabel the events in the event log, we return a relabeling function λ : V→Σ, s.t.,
λ(e) ̸=πact(e), ∀1≤i≤n (∀e, e′∈Vi (λ(e)=λ(e′))), and ∀1≤i<j≤n(∀e∈Vie

′∈Vj(λ(e)
̸=λ(e′))). The process discovery algorithm that is used on the event log L uses
λ(e) as a replacement for πact(e). As an example instantiation of λ, assume
the activity label that we aim to split is label a∈Σ. Given the partitioning
V={V1, V2, . . ., Vn}, for e∈V1, we let λ(e)=a1, for e′∈V2, we let λ(e′)=a2, etc.

In practice, the label-splitting algorithm typically outputs two artifacts, i.e.,
an event log L′ and the label function λ. In event log L′, the πact(e) values
(e.g., Activity column in Table 1) are simply overwritten by the λ function.
After process model discovery is applied on L′, the λ(e) values occurring in the
discovered model are replaced by their original πact value. The framework can
be iteratively applied, i.e., if the new activity labels used for the identified event
clusters are unique.

5 Evaluation

In this section, we present the evaluation of our approach. In Section 5.1, we
discuss the implementation of our approach, followed by the experimental setup
in Section 5.2. The results are presented in Section 5.3.

5.1 Implementation

A public implementation of our framework is available 6. The implementation
supports three types of contexts based on the k preceding/succeeding activi-
ties (cf. Section 4.3). Based on the length-k preceding and succeeding activity
sequences, we support the computation of normalized edit distance. Addition-
ally, the sequences can be further abstracted using either the set abstraction
(elem-function defined in Section 3) or the Parikh vector representation [20]
(multi-set representation counting the occurrences of each activity in the ac-
tivity sequences). The implementation uses the Louvain community detection
algorithm [6] for community detection.

The implementation supports variant compression. In the compression, all
events occurring in cases that describe the same sequence of activities, e.g., cases
2 and 3 in Table 1, are represented by a single unique vertex (observe that all
these events have the same control-flow context). The arc weights between the
vertices are equal to the sum of the arc weights in the uncompressed event graph.
Additionally, self-loops are added to the vertex to represent the similarity of the
equal events. Consider Fig. 4, showing a visual example of the application of
variant compression. The compression equals the initial data structure used in
the Louvain community detection algorithm and is, as such, particularly useful
in combination with said community detection algorithm.

6 https://github.com/jonas-tai/python-label-refinement

https://github.com/jonas-tai/python-label-refinement
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Fig. 4: Example of variant compression. Events {e1, e2, e3}, {e4, e5}, and {e6, e7}
are part of the same case variant, respectively. Vertex v1 represents {e1, e2, e3},
vertex v2 represents {e4, e5}, and vertex v3 represents {e6, e7}.

5.2 Experimental Setup

In this section, we describe the experimental setup of our experiments. We con-
duct two sets of experiments, i.e., an experiment using several synthetic event
logs (part of [19]) with a known ground-truth and an experiment using several
real event logs, i.e., without any known ground-truth.

We are primarily interested in the precision of the discovered process model
after applying label-splitting. The precision of the discovered models describes
the additional amount of behavior described by the model compared to an event
log. Typically, models discovered on the raw data are underfitting and have
low precision. As such, we investigate the increased precision of the discovered
process models due to label-splitting.

For the synthetic data, we know precisely which events belong to the same
“activity cluster”. Therefore, we can use Adjusted Rand Index (ARI) of the dis-
covered event clustering and the ground truth clustering to measure the general
quality of the detection mechanism (i.e., the ARI measures the similarity of two
clusterings).

Experiments with Synthetic Data We compare our approach with and with-
out variant compression to the state-of-the-art approach presented in [19] (we
use the same set of data as presented in [19]). In our experiments, we found that
the use of community detection instead of connected components leads to better
results. To show that our method outperforms the approach of [19] indepen-
dent of the clustering method, we substitute the use of connected components
by community detection in their implementation. In our approach, we use 11
different similarity thresholds, varying from 0.0 to 1.0, for including edges in
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Table 2: Parameter space for experiments on the synthetic event logs.
Algorithm Parameters

Context-based with
Variant Compression Similarity threshold ts={0, 0.1, . . . , 0.9, 1}

Context size k={1, 2, 3, 4, 5}
Distance metric dm={edit distance,

set distance,
multi-set distance}

Case-Mapping-based with
Community Detection Unfolding threshold tu={0, 0.1, . . . , 0.9, 1}

Variant threshold tv={0, 0.1, . . . , 0.9, 1}

Table 3: Parameter space used for the experiments on the real life event logs.
Algorithm Parameters

Context-based with
Variant Compression Similarity threshold ts={0, 0.25, 0.5, 0.75, 1}

Context size k={1, 3, 5}
Distance metric dm={edit distance,

set distance,
multi-set distance}

Case-Mapping-based with
Community Detection Unfolding threshold tu={0, 0.25, 0.5, 0.75, 1}

Variant threshold tv={0, 0.25, 0.5, 0.75, 1}

the constructed graph, five context sizes, and three metrics to measure the sim-
ilarity of events. We evaluate the approach of [19] with similar configurations
of their unfolding threshold tu, used to determine if two events with the same
label in one case get different labels, i.e., if they are part of a loop or not, and
variant threshold tv, used to prune edges on the graph structure created by the
algorithm to compare case mappings, parameters. A detailed list of the used
parameter space for each of the algorithms is depicted in Table 2. We use the
Inductive Miner [15] algorithm for process discovery without embedded noise
filtering. As such, the algorithm guarantees that the process model describes all
event data in the input (referred to as perfect fitness). Since a ground truth is
available, we know what labels are candidates to be used for the label-splitting
approach.

Experiments with Real-life Event Data We use publicly available event
logs in combination with our proposed algorithm in experiments with real-life
event data. We use 5 different event logs, i.e., the BPI Challenge logs from
2012 [11], 2013 (Closed Problems log) [22] and 2017 [12] (referred to as BPIC12,
BPIC13 and BPIC17, respectively). Additionally, we use the road fines event
log [16] and the environmental permits event log [8]. Due to the size of the event
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(a) The ARI scores obtained. Our ap-
proach (with and without compression)
and the existing technique (Mapping with
CD) [19]. The effect of compression is neg-
ligible, our approach achieves a signifi-
cantly higher average ARI score.

(b) The precision scores obtained. Our
approach tends to outperform the exist-
ing technique (Mapping with CD) [19] as
well as applying process discovery without
label-splitting.

Fig. 5: Results obtained for the experiments with synthetic data.

graphs, we primarily focus on the results of the variant compression, i.e., as
presented in Section 5.1. The values for the parameters are listed in Table 3.
We again use the Inductive Miner [15] algorithm for process discovery, in this
case, with embedded noise filtering. We investigated several activity labels as
a candidate for splitting. We tested our approach on the three most frequently
occurring activities. We selected the best-performing candidate, as we did not
have a domain expert to pick the best candidate for every event log manually.
For the road fines log, we selected the Payment activity for splitting due to
insides from a manually created model [16]. This model shows that the Payment
activity can be executed in different contexts, making it a prime candidate for
label-splitting.

5.3 Results

Here, we present the results of the experiments. We further divide this section
based on the results on synthetic event data and real event data, respectively.

Results on Synthetic Event Data As indicated, in total, we used 270 differ-
ent event logs from [18].

Consider Fig. 5, in which we present the corresponding results. In terms
of ARI score (Fig. 5a), our approach outperforms the existing state-of-the-art
label-splitting algorithm. Secondly, applying variant-based compression has a
negligible effect on the overall ARI score. In Fig. 5b, the precision scores of
the discovered process models is presented. The results are in line with the
results obtained for the ARI score, i.e., in general, our technique outperforms the
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Table 4: An overview of the results of the experiments with real event logs.
Unrefined

Log Variant Compression

Event Log IM Noise
Threshold

Min Cases
per Variant Precision F1-Score Max

Precision
Average
Precision

Max
F1-Score

Average
F1-Score

Average
Runtime

BPI12 0.1 3 0.31 0.48 0.58 0.33 0.73 0.48 36s
BPI13 - 1 0.8 0.89 0.98 0.87 0.99 0.93 49s
BPI17 0.1 3 0.37 0.53 0.54 0.4 0.68 0.56 492s

Road Fines 0.1 1 0.56 0.72 0.83 0.68 0.89 0.79 2s
Permit 0.1 1 0.19 0.31 0.36 0.25 0.52 0.4 0.2s

approach presented in [19]. Clearly, using the ground-truth event log generally
leads to models of near-perfect precision. Yet, the median result of applying
process discovery with our proposed label-splitting as a preprocessing step is
well over 0.8. On average, the approach presented in [19] seems to have little
effect compared to applying discovery on the unrefined event data.

Results on Real Event Data Here, we present the results of applying our
proposed label-splitting algorithm on real event data. The variant-compression-
based version of our framework is the only algorithm that finished within a
reasonable time for all event logs. The algorithm presented in [19] only finished
within the time-out set for the permits event log (13 seconds vs. 0.2 seconds
of our approach, lower precision results: 0.15 average precision vs. 0.25 of our
approach), road traffic fines event log (2823 seconds vs. 2 seconds of our ap-
proach, lower precision results: 0.6 average precision vs. 0.68 of our approach)
and BPI challenge 2013 event log (575 seconds vs. 49 seconds of our approach,
equal precision results: 0.87 average precision vs. 0.87 of our approach).

In Table 4, we present an overview of the results of our algorithm (using
different parameter configurations) and compare them with the results applied
to the raw event data. To reduce the number of events in the event data, for
BPI12 and BPI13, we enforce a minimum of 3 cases describing the same variant
to be included in the event log. We use the Inductive Mining algorithm as a
discovery algorithm with a noise threshold of 0.1 (except for BPI13, where no
threshold is used). The noise threshold allows for ignoring small portions of
noise, i.e., generally a large share of the behavior in the event log. We observe
that our algorithm increases the precision scores and, similarly, the F1-score.
The increase in precision is most significant in the Road Fines event log, where,
on average, an increase of 0.12 is measured. The compression yields a relatively
small graph for some logs, and the algorithm terminates within a few seconds.
Clearly, we observe higher runtime values for larger graphs (e.g., BPI17).

Finally, consider Fig. 6, in which we present box plots of the precision ob-
tained for the different instantiations of our algorithm on the real event logs. We
also present the result of [19] for the permits event log (“Case Mapping” in the
figure). We observe that the median value of our results outperforms the results
of the process discovery algorithm on the unrefined event log for all logs except
for BPI12, where it is slightly lower. For the road fines log, all obtained precision
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(a) The precision scores obtained with our
approach with variant compression.

(b) The precision scores obtained with the
state-of-the-art technique from [19].

Fig. 6: Results obtained for the experiments with real life event data. The red
line indicates the precision on the unrefined event log.

values exceed the result on the raw event log. Notably, the approach presented
in [19] does not always improve the quality of discovered process models, com-
pared to using the raw event data, inline with the conclusion in [19].

6 Conclusion and Discussion

Label-splitting, i.e., an established preprocessing technique in process mining,
generally allows for better results from process discovery algorithms. However,
the state-of-the-art label-splitting algorithm performs poorly on real event data
and often has infeasible runtime. Therefore, this paper presented a novel label-
splitting framework based on event similarity graphs. Our experiments show that,
compared to the state-of-the-art label-splitting algorithm, our approach yields
process models with higher precision and has better runtime performance.

One interesting finding of our evaluation is that the best parameter configu-
ration for our algorithms highly depends on the input event log. One solution is
to run our algorithm over a range of parameter configurations. By using various
optimizations in the implementation, e.g., only recalculating the graph edges
after the first iteration, we found this to be a feasible solution in our evaluation
of real event data.

Future Work; Using variant-compression allows us to obtain a feasible run-
time for the algorithm. We plan to perform experiments with different com-
munity detection algorithms and investigate whether the compression can be
adopted. Secondly, we aim to investigate detection mechanisms for label-splitting,
i.e., indicating what activity labels may be good candidates for splitting.
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