
Incremental Discovery of Process Models Using
Trace Fragments

Daniel Schuster1,2 , Niklas Föcking1 , Sebastiaan J. van Zelst1,2 , and
Wil M. P. van der Aalst1,2

1 Fraunhofer Institute for Applied Information Technology FIT, Germany
{daniel.schuster,niklas.foecking,sebastiaan.van.zelst}@fit.fraunhofer.de

2 RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Process discovery learns process models from event data and
is a crucial discipline within process mining. Most existing approaches
are fully automated, i.e., event data is provided, and a process model is
returned. Thus, process analysts cannot interact and intervene besides
parameter settings. In contrast, Incremental Process Discovery (IPD)
enables users to actively participate in the discovery phase by gradually
selecting process behavior to be incorporated into a process model. Fur-
ther, most discovery approaches assume process executions, also termed
traces, recorded in event data to be complete—complete traces span the
actual process from start to completion. Incomplete traces are usually
removed in the event data preparation as most discovery algorithms can-
not handle them respectively treat them simply as full traces. This paper
presents a novel IPD approach that can incorporate process behavior
recorded in trace fragments, thus supporting incomplete data. Our ex-
periments show promising results indicating that using trace fragments
within IPD leads to high-quality process models.

Keywords: Process mining · Process discovery · Alignments

1 Introduction

Process discovery, i.e., learning process models from event data, is a critical
discipline within process mining. Discovered models are vital artifacts as they
capture the actual execution of processes. Further, many subsequently applied
process mining techniques require models as input, for example, generating tem-
poral performance diagnostics and conformance checking statistics [9]. Moreover,
these models are used for specifying process-aware information systems [15].

Most process discovery approaches are fully automated [3,22,23]. They take
event data as input and return a process model. Apart from parameter settings,
users cannot interact with these algorithms despite choosing the input event
data and post-processing the discovered model. Moreover, most process discovery
algorithms consider the process executions, i.e., traces, recorded in the event data
to be complete—traces are assumed to span the process from start to completion.
Trace fragments are usually filtered during event data preparation [6,7].

https://orcid.org/0000-0002-6512-9580
https://orcid.org/0000-0003-4721-2871
https://orcid.org/0000-0003-0415-1036
https://orcid.org/0000-0002-0955-6940

2 D. Schuster et al.

Event
Data

Frequent
Pattern
Mining Trace-Fragment-

Supporting
Incremental

Process
Discovery (IPD)

manually
extract

Selected
full trace or

trace fragment
to be added next
not supported by
the process model

(Initial)
process
model

Previously added
traces and/or

trace fragments

supported by the
process model

Modified process model
supporting previously added
and user-selected full traces

and trace fragments

manually
create

manually
create

Pool of Trace
Fragments

Prefixes 𝑋, 𝑋, 𝑋⋯
Infixes ⋯ ,𝑋, 𝑋, 𝑋,⋯
Postfixes ⋯ ,𝑋, 𝑋, 𝑋

select

Process
analyst

Automated
Identification

Pool of Full Traces

𝑋, 𝑋, 𝑋

Focus of
this paper

Fig. 1: Overview of Incremental Process Discovery (IPD) with trace fragments
and potential origins of trace fragments. Process analysts gradually select process
behavior, i.e., full traces and trace fragments, that is added to the process model

In contrast to conventional process discovery, taking event data as input and
returning a process model, domain-knowledge-utilizing process discovery utilizes
additional information besides event data, e.g., user feedback in an interactive
discovery phase [10] or explicitly-specified knowledge like precedence constraint
among activities [12]. We provide a review of such approaches in [19].

This paper focuses on Incremental Process Discovery (IPD) [17], which dis-
covers process models from event data by gradually extending a model by new
process behavior, cf. Fig. 1. The central research question addressed is: How can
trace fragments, i.e., trace prefixes/infixes/postfixes, be (incrementally) added to
a process model? We answer this question by proposing a novel IPD approach
that allows gradually discovering models from trace fragments and full traces.
Thus, the proposed approach utilizes incomplete process behavior, i.e., trace frag-
ments. We evaluate the proposed approach on real-life event data. The results
indicate that incorporating trace fragments is beneficial and yields high qual-
ity process models. The results further show that a distinction between trace
fragments and full traces can lead to better models compared to approaches
that do not support fragments respectively consider all traces as full. Finally, we
implemented the approach in the open-source process mining tool Cortado [20].3

Consider Fig. 1; trace fragments may originate from different sources. First,
event data itself may contain incomplete respectively partial traces that often
occur when event data of a specific time range is extracted from information sys-

3
https://cortado.fit.fraunhofer.de (from version 1.10.0)

https://cortado.fit.fraunhofer.de

Incremental Discovery of Process Models Using Trace Fragments 3

tems. Since trace fragments are usually not labeled as such and are considered
complete by state-of-the-art process discovery approaches, event data prepara-
tion techniques must be used, e.g., [6], to identify trace fragments that can then
be added to the fragment pool, cf. Fig. 1. Second, users can manually extract
relevant fragments from full traces. Reasons to proceed in this way are manifold.
For instance, an analyst does not want certain variations from full traces that
cover specific process stages in the discovered process model; instead, the analyst
is only interested in specific fragments. Finally, users can manually create trace
fragments during IPD if particular process behavior is not present in the data
but should be reflected by the discovered model.

This paper addresses current challenges within business process management
(BPM) and process mining. Central research challenges of the BPM discipline
are identified in [4]. One challenge is the augmentation “of process mining with
common sense and domain knowledge” [4, p. 3]. Domain knowledge about the
process under study is often available besides event data; however, process min-
ing techniques often do not utilize such domain knowledge. IPD itself and the
proposed trace-fragment-supporting IPD approach allow such exploitation of do-
main knowledge because 1) users gradually select process behavior (full traces
and fragments) to be incorporated into the process model under discovery and
2) can specify how traces from event data are interpreted, i.e., either as full or
prefix/infix/postfix traces. By manually creating trace fragments (cf. Fig. 1),
another means to incorporate domain knowledge exists. The authors [4] further
argue that domain knowledge utilization is beneficial to overcome event data
quality issues.

The remainder of this paper is structured as follows. Sect. 2 presents related
work, while Sect. 3 introduces preliminaries. We present the proposed trace-
fragment-supporting IPD approach in Sect. 4. An initial evaluation of the pro-
posed approach is presented in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

Plenty of conventional, automated process discovery algorithms exist; we refer
to [3,22,23] for overviews. These mainly differ in the model formalism used, guar-
antees of the discovered model concerning model properties (e.g., soundness),
concerning the event data provided (e.g., replay fitness), and computational
complexity. From an input/output perspective, however, these algorithms work
similarly, i.e., they take event data as input and automatically learn a model.

Domain-knowledge-utilizing process discovery approaches are significantly
less common than conventional process discovery. We provide a systematic liter-
ature review in [19]. As considered in this work, IPD has been initially proposed
in [17]. In [21], the authors also use the term incremental process discovery. How-
ever, they create multiple transition systems describing process behavior and
then incrementally compose them into a single transition system from which
a process model is eventually discovered. Thus, their definition of incremental
discovery is unrelated to ours, as illustrated in Fig. 1.

4 D. Schuster et al.

Process model repair [2,11,14] is related to IPD, as elaborated in [19]. Model
repair techniques extend process models by non-fitting process behavior. Al-
though repair techniques are not intended to be used incrementally, they can
be used similar as illustrated in Fig. 1. However, they create a process model
as close as possible to the input process model since the focus is on repairing
and not on discovering. This objective is an essential difference from IPD, where
this objective does not necessarily exist and is even disadvantageous because the
model in the discovery process is constantly being developed and changed.

To the best of our knowledge, no discovery approach, neither conventional
nor domain-knowledge-utilizing, and no model repair approach addresses trace
fragments explicitly. Thus, even if there is domain knowledge that allows traces
to be identified as fragments and labeled as such, no existing approach supports
it. However, note that discovery approaches utilizing region theory [5] can handle
prefixes. On the contrary, trace fragments—most approaches consider all traces
complete—are typically filtered from event logs to obtain better models [6,7].
Thus, supporting trace fragments within IPD is a novelty.

3 Preliminaries

Let X be a set. We denote the universe of multi-sets over X by B(X) and the set
of all sequences over X as X∗, e.g., [a3, c] ∈ B({a, b, c}) and ⟨a, b, b⟩ ∈ {a, b, c}∗.
Given two multi-sets M,M ′ ∈ B(X), we denote their union by M ⊎ M ′. We
denote the length of a sequence σ by |σ|. For 1≤i≤|σ|, σ(i) represents the i-th
element of σ. Given sequences σ and σ′, we denote their concatenation by σ·σ′,
e.g., ⟨a⟩·⟨b, c⟩ = ⟨a, b, c⟩. We extend the · operator to sets of sequences, i.e., let
S1, S2⊆X∗ then S1·S2 = {σ1·σ2 |σ1∈S1∧σ2∈S2}. For sequences σ, σ′, the set of
all interleaved sequences is denoted by σ⋄σ′, e.g., ⟨a, b⟩⋄⟨c⟩ = {⟨a, b, c⟩, ⟨a, c, b⟩,
⟨c, a, b⟩}. We extend the ⋄ operator to sets of sequences. Let S1, S2⊆X∗, S1⋄S2

denotes the set of interleaved sequences, i.e., S1⋄S2 =
⋃

σ1∈S1,σ2∈S2
σ1⋄σ2.

For σ∈X∗ and X ′⊆X, we define the projection function σ↓X′ :X
∗→(X ′)∗

with: ⟨⟩↓X′=⟨⟩,
(
⟨x⟩·σ

)
↓X′

=⟨x⟩·σ↓X′ if x∈X ′, and (⟨x⟩·σ)↓X′=σ↓X′ otherwise.

Let t=(x1, . . . , xn) ∈ X1× . . .×Xn be an n-tuple over n sets. We define pro-
jection functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn,
e.g., π2 ((a, b, c))=b. For a sequence σ = ⟨(x1

1, . . . , x
1
n), . . . , (x

m
1 , . . . , xm

n)⟩ ∈ (X1×
. . .×Xn)

∗ containing n-tuples, we define projection functions π∗1(σ) = ⟨x1
1,

. . . , xm
1 ⟩, . . . , π∗n(σ) = ⟨x1

n, . . . , x
m
n ⟩; e.g., π∗2 (⟨(a, b), (c, d), (c, b)⟩)=⟨b, d, b⟩.

3.1 Event Data

Event logs are a collection of event data describing the execution of a process.
Individual process executions, referred to as traces, are considered sequences of
executed activities. For instance, σ = ⟨a1, a2, . . . , an⟩ is a trace consisting of n
activities, and L =

[
⟨c, b, d⟩3, ⟨a, e, d⟩2

]
is an event log that consists of 5 traces.

Definition 1 (Trace & Event Log). Let A be the universe of activities. A
trace σ is a sequence of activities, i.e., σ ∈ A∗. An event log L is a multi-set of
traces, i.e., L ⊆ B(A∗).

Incremental Discovery of Process Models Using Trace Fragments 5

→
n0

⟲

n1.1

×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a
n2.4

f

n2.5

Fig. 2: Exemplary process tree T0 =
(
V0, E0, λ0, n0) with V0 = {no, . . . , n4.4},

E0 =
{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, and λ(n0) = →, . . . , λ(n4.4) = d

3.2 Process Models

We use process trees that represent a subclass of sound workflow nets and are
an important model formalism used by many discovery approaches [8,13,17].
Process trees are rooted, labeled, ordered trees where leaf nodes represent ac-
tivities and inner nodes control-flow operators that specify the execution of its
subtrees. We distinguish four operators: sequence (→), parallel (∧), loop (⟲),
and exclusive choice (×). Fig. 2 depicts an example process tree T0.

Definition 2 (Process Tree). Let A be the universe of activities with τ /∈A
and

⊕
={→,×,∧,⟲} be the process tree operators. We define a process tree as

a labeled, rooted tree T=(V,E, λ, r) consisting of a totally ordered set of nodes
V , edges E ⊆ V ×V , a labeling function λ : V → A∪{τ}∪

⊕
, and a root r∈V .

–
(
{n}, ∅, λ, n

)
with λ(n)∈A∪{τ} is a process tree.

– Given k>1 trees T1=(V1, E1, λ1, r1), . . . , Tk=(Vk, Ek, λk, rk), node r /∈ V1∪
. . .∪Vk, and ∀1≤i<j≤k(Vi∩Vj=∅) then T=(V,E, λ, r) is a process tree where:
• V = V1 ∪ · · · ∪ Vk ∪ {r},
• E = E1 ∪ · · · ∪ Ek ∪

{
(r, r1), . . . , (r, rk)

}
,

• λ(x)=λj(x) for all j∈{1, . . . , k}, x∈Vj, and
• λ(r) ∈

⊕
and λ(r) = ⟲ ⇒ k = 2.

We denote the universe of process trees by T .

ρ =
〈
(n0, open),
(n1.1, open),

(n2.1, open),
(n3.2, open),

(n4.4, d), (n4.3, c),
(n3.2, close),

(n2.1, close),
(n1.1, close),
(n1.2, open),

(n2.3, e), (n2.5, f), (n2.4, a),
(n1.2, close),

(n0, close)
〉

Fig. 3: Running sequence ρ∈RS(T0)

For an arbitrary T=(V,E, λ, r) ∈ T ,
we define function cT : V → V ∗

that returns the child nodes of a given
node sorted accordingly; for instance,
cT0(n1.2) = ⟨n2.3, n2.4, n2.5⟩. We refer to
the Lowest Common Ancestor (LCA) of
two nodes n, n′ ∈ V as lcaT (n, n′) ∈ V ;
e.g., lcaT0(n4.4, n2.2) = n1.1. The function
∆T (n) → T returns the subtree rooted at
n ∈ V from T . We write T ′ ⊑ T to denote
that T ′ is a subtree of T .

We define the semantics of process
trees via running sequences consisting of
2-tuples where the first entry is a node n

6 D. Schuster et al.

and the second entry is either the label if n is a leaf node or a label indicating the
opening or closing of the subtree rooted at n. Fig. 3 shows one running sequence ρ
of process tree T0. Note that ρ corresponds to the trace

(
π∗2(ρ)

)
↓A

= ⟨d, c, e, f, a⟩.

Definition 3 (Running Sequence). Let A be the universe of activities with
τ, open, close /∈ A. Let S = V× (A ∪ {τ, open, close}) be the set of steps. For
T=(V,E, λ, r) ∈ T , we recursively define its running sequences RS(T) ⊆ S∗.

– if λ(r) ∈ A∪{τ} (T is a leaf node): RS(T) =
{〈

(r, λ(r))⟩
}

– if λ(r) =→ with child nodes cT (r)=⟨v1, . . . , vk⟩ for k≥1:
RS(T) =

{〈
(r, open)

〉}
·RS(△T (v1))· . . . ·RS(△T (vk))·

{〈
(r, close)

〉}
– if λ(r) = × with child nodes cT (r)=⟨v1, . . . , vk⟩ for k≥1:

RS(T) =
{〈

(r, open)
〉}

· RS(△T (v1))∪ . . .∪RS(△T (vk)) ·
{〈

(r, close)
〉}

– if λ(r)=∧ with child nodes cT (r)=⟨v1, . . . , vk⟩ for k≥1:
RS(T) =

{〈
(r, open)

〉}
· RS(△T (v1))⋄ . . . ⋄RS(△T (vk)) ·

{〈
(r, close)

〉}
– if λ(r) = ⟲ with child nodes cT (r)=⟨v1, v2⟩:

RS(T) =
{〈

(r, open)
〉
·σ1·σ′1·σ2·σ′2·. . .·σm·

〈
(r, close)

〉
| m≥1 ∧

∀1≤i≤m
(
σi∈RS(△T (v1))

)
∧ ∀1≤i<m

(
σ′i∈RS(△T (v2))

)}
The language of a tree T ∈ T is a set of supported traces, i.e., L(T) ={

π∗2(σ)↓A | σ∈RS(T)
}
⊆A∗. Further, we define its prefix/infix/postfix language.

– Lprefix(T) = {σ1 | σ1, σ2 ∈ A∗ ∧ σ1 · σ2 ∈ L(T)}
– Linfix(T) = {σ2 | σ1, σ2, σ3 ∈ A∗ ∧ σ1 · σ2 · σ3 ∈ L(T)}
– Lpostfix(T) = {σ2 | σ1, σ2 ∈ A∗ ∧ σ1 · σ2 ∈ L(T)}

Finally, we formally introduce fitness-preserving process discovery.

Definition 4 (Fitness-Preserving Process Discovery). Let L ⊆ B(A∗) be
an event log. We define a fitness-preserving, automated process discovery algo-
rithm as a function disc : B(A∗) → T such that L ⊆ L

(
disc(L)

)
.

3.3 Alignments

Alignments [1] are a state-of-the-art conformance-checking technique [9] to com-
pare process models with traces. Full alignments, often referred to as alignments,
and prefix alignments have been introduced in [1]. In [16], we define infix and
postfix alignments and describe their computation. Fig. 4 shows an exemplary
full, prefix, infix, and postfix alignment for different trace (fragments) and tree
T0. In general, the first row, i.e., the trace part, of any alignment corresponds to
the trace (fragment) when ignoring the skip symbol ≫. Analogously, the second
row, i.e., the model part, corresponds to a running sequence (fragment) of the
tree when ignoring ≫. Each column represents an alignment move; we generally
distinguish five types: synchronous moves , log moves , visible model moves ,

invisible model moves , and opening & closing model moves .

Incremental Discovery of Process Models Using Trace Fragments 7

≫ ≫ ≫ ≫ c d ≫ ≫ ≫ ≫ ≫ a f ≫ ≫
(n0,
open)

(n1.1,
open)

(n2.1,
open)

(n3.2,
open)

(n4.3,
c)

(n4.4,
d)

(n3.2,
close)

(n2.1,
close)

(n1.1,
close)

(n1.2,
open)

(n2.3,
e)

(n2.4,
a)

(n2.5,
f)

(n1.2,
close)

(n0,
close)

(a) Optimal full alignment γ1 for the full trace ⟨c, d, a, f⟩ and T0

≫ ≫ ≫ ≫ a b ≫ ≫ ≫ ≫ ≫ d
(n0,
open)

(n1.1,
open)

(n2.1,
open)

(n3.1,
open)

(n4.1,
a)

(n4.2,
b)

(n3.1,
close)

(n2.1,
close)

(n2.2,
τ)

(n2.1,
open)

(n3.2,
open)

(n4.4,
d)

(b) Optimal prefix alignment γ2 for the trace prefix ⟨a, b, d⟩ and T0

d f ≫ ≫ ≫ ≫ ≫ d
(n4.4,
d)

≫ (n3.2,
close)

(n2.1,
close)

(n2.2,
τ)

(n2.1,
open)

(n3.2,
open)

(n4.4,
d)

(c) Optimal infix alignment γ3 for the trace
infix ⟨d, f, d⟩ and T0

e e f ≫ ≫

≫ (n2.3,
e)

(n2.5,
f)

(n1.2,
close)

(n0,
close)

(d) Optimal postfix alignment γ4 for
the trace postfix ⟨e, e, f⟩ and T0

Fig. 4: Examples of optimal alignments for process tree T0 (cf. Fig. 2)

Definition 5 (Full/Prefix/Infix/Postfix Alignment). Let A be the uni-
verse of activity labels, ≫/∈ A∪{τ}, σ ∈ A∗ be a trace (fragment), T=(V,E, λ,
r) ∈ T , and S = V× (A∪{τ, open, close}) be the set of running sequence steps.
Sequence γ ∈

(
(A∪{≫})×(S∪{≫})

)∗
is a full/prefix/infix/postfix alignment if:

1. σ = π∗1(γ)↓A ,
2. – Full alignment: π∗2(γ)↓S ∈ RS(T),

– Prefix alignment: ∃ρ ∈ S∗
(
π∗2(γ)↓S · ρ ∈ RS(T)

)
,

– Infix alignment: ∃ρ1, ρ2 ∈ S∗
(
ρ1 · π∗2(γ)↓S · ρ2 ∈ RS(T)

)
,

– Postfix alignment: ∃ρ ∈ S∗
(
ρ · π∗2(γ)↓S ∈ RS(T)

)
,

3. (≫,≫) /∈ γ,
4. ∀1≤i≤|γ|

(
π1(γ(i))∈A ∧ π2(π2

(
γ(i)))∈A ⇒ π1(γ(i))=π2(π2(γ(i)))

)
, and

5. ∀1≤i≤|γ|
(
π2(π2

(
γ(i)))∈{open, close} ⇒ π1(γ(i))=≫

)
.

We denote the universe of full/prefix/infix/postfix alignments for T and σ by
Γfull(T, σ), Γprefix (T, σ), Γinfix (T, σ), and Γpostfix (T, σ). We denote the universe
of alignments as Γ (T, σ) = Γfull(T, σ)∪Γprefix (T, σ)∪Γinfix (T, σ)∪Γpostfix (T, σ).

Consider Fig. 4d, γ4 =
〈(
e,≫), (e, (n2.3, e)), (f, (n2.5, f)), (≫, (n1.2, close)),

(≫, (n0, close))
)〉

is a postfix alignment. Let γ ∈ Γ (T, σ) and γ(i) for 1≤i≤|γ|
be an alignment move. We introduce abbreviations for ease of reading.

– traceLabel
(
γ(i)

)
= π1(γ(i))

– modelNode
(
γ(i)

)
=

{
π1

(
π2(γ(i))

)
if π2

(
γ(i)

)
∈ S

≫ otherwise

– modelLabel
(
γ(i)

)
=

{
π2

(
π2(γ(i))

)
if π2

(
γ(i)

)
∈ S

≫ otherwise

For example, consider postfix alignment γ4 shown in Fig. 4d: traceLabel
(
γ4(2)

)
=

e, modelNode
(
γ4(2)

)
= n2.3, and modelLabel

(
γ4(2)

)
= e.

For an alignment γ ∈ Γ (T, σ), we say that the alignment move γ(i) for
1≤i≤|γ| indicates a deviation if it is a log move, i.e., traceLabel(γ(i)) = ≫, or a
visible model move, i.e., traceLabel(γ(i)) = ≫ ∧ modelLabel(γ(i)) ∈ A.

8 D. Schuster et al.

Let □ ∈ {full , prefix , infix , postfix}, T ∈ T , and σ ∈ A∗. Since many align-
ments exist for a given trace (fragment) and a process tree, the concept of opti-
mality exists. An alignment is optimal if the number of visible model moves and
log moves is minimal. We define four functions align□ : T ×A∗ → Γ□(T, σ) that
return a □ alignment for σ ∈ A∗ and T ∈ T . We write alignopt

□ to indicate that
we compute an optimal □ alignment.

4 Trace-Fragment-Supporting IPD

This section describes the proposed trace-fragment-supporting IPD approach
(cf. Fig. 1) that builds on the IPD approach presented in [17], which only fea-
tures full traces. The basic idea, however, remains. When a full trace/trace frag-
ment is added that is not contained in the language of the current process tree,
the proposed approach determines relevant subtrees in the given process tree
causing the deviation and rediscovers these deviating subtrees such that previ-
ous added traces/trace fragments and additionally the given trace (fragment)
are supported. The remainder of this section presents the algorithm in detail.
Sect. 4.1 presents the core part of the algorithm and introduces a running exam-
ple. Next, Sect. 4.2 describes how deviating subtrees are identified, and Sect. 4.3
introduces the corresponding sub-log calculation needed for rediscovery.

4.1 Overview

This section provides an overview of the proposed approach. Further, we intro-
duce a running example demonstrating various critical steps of the approach, cf.
Fig. 5. Below, we list the required four inputs.

1. trace (fragment) σnext ∈ A∗ to be added next to the current process tree
2. interpretation □ ∈ {full , prefix , infix , postfix} of trace (fragment) σnext

3. previously added traces and trace fragments, divided into full traces Lfull ⊆
A∗, prefixes Lprefix ⊆ A∗, infixes Linfix ⊆ A∗, and postfixes Lpostfix ⊆ A∗

4. process tree T∈T , supporting previously added traces/trace fragments, i.e.,
Lfull ⊆ L(T), Lprefix ⊆ Lprefix(T), Linfix ⊆ Linfix(T), and Lpostfix ⊆
Lpostfix(T)

Note that the proposed approach requires an initial process tree as input to start
the incremental process discovery in the very first iteration. For example, this
initial process tree can consist of only a single (invisible) activity. Alternatively,
users can manually model an initial tree or use a conventional process discovery
algorithm to discover one.

The output of the trace-fragment-supporting IPD algorithm is a process tree
T that, in addition to the previously added traces and trace fragments, contains
σnext in its language—depending on σnext’s interpretation, σnext ∈ L□(T). Sub-
sequently, we introduce the overall algorithm, presented in Alg. 1, and exemplify
critical steps with the running example shown in Fig. 5.

Incremental Discovery of Process Models Using Trace Fragments 9

→
r′

start

n′
s

→
n0⟲

n1.1

×

n2.1

→

n3.1

a

n4.1

b

n4.2

∧

n3.2

c

n4.3

d

n4.4

τ

n2.2

∧

n1.2

e

n2.3

a

n2.4

f

n2.5

end

n′
e

(a) Input process tree T , i.e., tree T0 ex-
tended by a start and end activity

σnext = ⟨a, a, f, end⟩
□ = postfix

Lfull =
[
σ1=⟨start , a, b, a, b, f, e, a, end⟩

]
Lprefix =

[
σ2=⟨start , d, c, e, a⟩

]
Linfix =

[
σ3=⟨c, f, a⟩, σ4=⟨b, d, c, e, a⟩

]
Lpostfix =

[
σ5=⟨f, a, end⟩

]
(b) Input trace (fragment) σnext to be added
to T , its interpretation □, previously added
full traces, and trace fragments

1 2 3 4 5 6 7

a a f ≫ ≫ end ≫
(n2.4,
a)

≫ (n2.5,
f)

(n1.2,
close)

(n0,
close)

(n′
e,

end)
(r′,
close

(c) Optimal postfix alignment for
σnext and T—the 2. alignment move
indicates a deviation (Alg. 1 line 2)

lcaT (n2.4, n2.5) = n1.2

TLCA = △T ′
(n1.2)

∧
n1.2

e
n2.3

a
n2.4

f
n2.5

(d) Problematic subtree TLCA ⊑ T
(Alg. 1 line 3)

LLCA =
[

⟨e, a, a, f⟩ derived from σnext

⟨f, e, a⟩ derived from σ1

⟨e, a, f⟩2 derived from σ2, σ4

⟨f, a, e⟩ derived from σ3

⟨e, f, a⟩
]

derived from σ5

(e) Sub-log LLCA for TLCA (Alg. 1 line 4) that
represents trace fragments TLCA must support
to avoid the deviation indicated in the postfix
alignment shown in Fig. 5c

→
r′

start

n′
1

→
n0⟲

n1.1

×

n2.1

→

n3.1

a

n4.1

b

n4.2

∧

n3.2

c

n4.3

d

n4.4

τ

n2.2

∧

n1.2

e

n2.3
⟲

n2.4a

n3.3

τ

n3.4

f

n2.5

end

n′
2

(f) Replacing TLCA ⊑ T by
disc(LLCA) ∈ T (Alg. 1 line 5)

Fig. 5: Running example of a full execution of the proposed IPD approach

Input Preparation Alg. 1 requires that the input artifacts, the tree T and the
traces/trace fragments as described above, are extended by an artificial start
and end activity. These artificial activities are needed to ensure the correct in-
tegration of trace infixes and postfixes into T .

1. Process tree T is extended by start , end /∈ A activities, e.g., cf. Fig. 5a.
2. Trace (fragment) to be added next σnext and previously added traces/trace

fragments are correspondingly extended by start and end activities to match
the extended process tree T , for example, consider Fig. 5b.

Extending Process Tree T This section describes Alg. 1. First, we calculate
an optimal full/prefix/infix/postfix alignment γ according to σnext ’s interpre-

10 D. Schuster et al.

Algorithm 1: TraceFragmentSupportingIPD
input : T=(V,E, λ, r) ∈ T , // process tree to be extended
□ ∈ {full, prefix , infix , postfix}, σnext ∈ A∗, // □ trace σnext to be added to L□(T)
Lfull , Lprefix , Linfix , Lpostfix ⊆ B(A∗), // previously added full traces/trace fragments
output: T ∈ T // σnext ∈ L□(T), Lfull ⊆ L(T), Lprefix ⊆ Lprefix(T),

Linfix⊆Linfix(T), Lpostfix⊆Lpostfix(T)
begin

1 L□ ← L□ ⊎ [σnext]; // add σnext to the corresponding log Lnext

2 while γ ← alignopt

□
(T, σnext) indicates a deviation do // σnext /∈ L□(T)

3 TLCA ← DetermineSubtree(T, γ) ; // Alg. 2
if TLCA then

4 LLCA ← SubLog(T, TLCA, Lfull, Lprefix, Linfix, Lpostfix); // Alg. 3
5 T ← replace TLCA ⊑ T by disc(LLCA)∈T ;

else // no subtree causing the deviation could be determined
6 T ← extend T according to Fig. 6;

7 return T ;

tation. In case γ does not indicate a deviation, we know that σnext ∈ L□(T)
and return. Otherwise, we call Alg. 2 in line 3 that determines the subtree
TLCA ⊑ T that causes the first cohesive block of deviations, as indicated in γ.
Hereinafter, assume that TLCA exists. Next, we calculate sub-log LLCA for the
determined subtree TLCA, cf. line 4. The sub-log corresponds to all sub-traces
that TLCA must be able to replay, i.e., LLCA ̸⊆ L(TLCA). Sub-log LLCA is there-
fore calculated based on previous added full/prefix/infix/postfix traces and the
trace (fragment) to be added next, i.e., σnext . Next, we replace TLCA ⊑ T by
a new subtree disc(LLCA) ∈ T that fully supports the computed sub-log, i.e.,
LLCA ⊆ L(disc(LLCA)) (line 5). Again, we compute alignment γ for the modified
tree T and σnext (line 2). If γ still indicates deviations, we repeat the procedure
described above until all deviations are resolved. Note that the termination of
Alg. 1 is guaranteed since in each iteration of the while block (line 2–6), the
first contiguous block of deviations is resolved. Thus, eventually σnext ∈ L□(T).

Consider the running example, cf. Fig. 5. The postfix alignment (cf. Fig. 5c)
indicates a deviation—the second move is a log move, i.e., activity a cannot be
replayed twice in the model. Next, we compute the subtree TLCA that causes
the deviation, cf. Fig. 5d. TLCA supports the postfix ⟨a, f⟩ but not the postfix
⟨a, a, f⟩. Since we want to replace respectively rediscover TLCA, we calculate a
corresponding sub-log LLCA, cf. Fig. 5e. The actual computation is explained in
a subsequent section. However, note that the calculated sub-log LLCA contains
⟨e, a, a, f⟩. Thus, when discovering a tree from LLCA using a fitness-preserving
discovery algorithm (cf. Def. 4), the discovered tree supports the execution of
two subsequent a activities.

So far, we assumed that TLCA causing the deviation(s) as indicated in γ could
be determined. However, one case exists in which TLCA cannot be determined,
i.e., σnext is an infix, and T does not contain any of its activities. Hence, γ
includes only log moves. Thus, we do not have any reference point in the tree
where the infix should happen. In this case, we extend tree T as depicted in
Fig. 6, i.e., we discover a subtree disc([σnext]), make it optional, and add it in
parallel to T (cf. line 6). This extension guarantees that σnext ∈ L□(T). This

Incremental Discovery of Process Models Using Trace Fragments 11

∧

→
r′

start

n′s

end

n′e

×

τ

disc([σnext])

T

Fig. 6: Extending tree T by an optional parallel subtree supporting σnext

Algorithm 2: DetermineSubtree (called in Alg. 1 line 3)

input : T ∈ T , γ ∈ Γ (T, σnext) // alignment for trace (fragment) σnext and T
output: TLCA ⊑ T// subtree that is responsible for the first deviation (block)
begin

1 forall 1≤i≤|γ| do
2 if γ(i) indicates a deviation then
3 ibefore ← closest move γ(ibefore) before γ(i) that is a synchronous move or an

invisible model move (if possible, otherwise null);
4 iafter ← closest move γ(iafter) after γ(i) that is a synchronous move or an

invisible model move (if possible, otherwise null);
5 if ibefore ∧ iafter then // both corresponding moves exist

6 return ∆T
(
lcaT

(
modelNode(γ(ibefore)),modelNode(γ(iafter))

))
;

7 else if ibefore then // only a corresponding move before exists

8 return ∆T
(
modelNode(ibefore)

)
;

9 else if iafter then // only a corresponding move after exists

10 return ∆T
(
modelNode(iafter)

)
;

11 else
12 return null;

described procedure is however usually very The next sub-sections introduce the
algorithms DetermineSubtree and SubLog called in Alg. 1 (line 3 and 4).

4.2 Subtree Detection

Alg. 2 describes the subtree detection DetermineSubtree of TLCA. As input,
Alg. 1 provides tree T and alignment γ ∈ Γ□(T, σnext) indicating a deviation. The
central idea is to find the first deviation (block) in γ and the closest alignment
moves that: surround the found deviation (block), do not indicate a deviation,
and correspond to an executed leaf node of T , cf. line 3 and 4. If such two moves
can be found, we compute an LCA from the corresponding leaf nodes of these
moves. We know that the subtree rooted at the computed LCA is causing the
deviation (block), and hence, we return it (line 6). If we can only find one of the
two moves, we return the subtree rooted at the corresponding node—this subtree
consists of only a leaf node and indicates that around this leaf node, a deviation
occurs regarding σnext . In the particular case that no surrounding move can be
found, we return nothing, cf. line 12. Note that this case can only happen if we
have an infix alignment containing only log moves—all other alignments have
at least a synchronous move on the initially added start or end activity (cf.
Fig. 5a).

12 D. Schuster et al.

Algorithm 3: SubLog (called in Alg. 1 line 4)

input : T∈T , TLCA⊑T, Lfull , Lprefix , Linfix , Lpostfix⊆B(A∗)
output: LLCA ⊆ B(A∗) // sub-log for TLCA

begin
1 LLCA ← []; // initialize sub-log for TLCA

2 forall σ ∈ Lfull do

3 γ ← alignopt
full (T, σ);

4 LLCA ← LLCA ⊎ ExtractSubTraces(TLCA, γ, {1 , . . . , |γ|}); // Alg. 4

5 forall σ ∈ Lprefix do

6 γ ← alignopt
prefix (T, σ) · alignpostfix (T, ⟨⟩) such that γ∈Γfull (T, σ);

7 I ← {1, . . . , i} such that ⟨γ(1), . . . , γ(i)⟩ = alignopt
prefix (T, σ);

8 LLCA ← LLCA ⊎ ExtractSubTraces(TLCA, γ, I); // Alg. 4

9 forall σ ∈ Linfix do

10 γ ← alignprefix (T, ⟨⟩) · alignopt
infix (T, σ) · alignpostfix (T, ⟨⟩) such that γ∈Γfull(T, σ);

11 I ← {i, . . . , i+n} such that ⟨γ(i), . . . , γ(i+n)⟩ = alignopt
infix (T, σ);

12 LLCA ← LLCA ⊎ ExtractSubTraces(TLCA, γ, I); // Alg. 4

13 forall σ ∈ Lpostfix do

14 γ ← alignprefix (T, ⟨⟩) · alignopt
postfix (T, σ) such that γ∈Γfull(T, σ);

15 I ← {i, . . . , |γ|} such that ⟨γ(i), . . . , γ(|γ|)⟩ = alignopt
postfix (T, σ);

16 LLCA ← LLCA ⊎ ExtractSubTraces(TLCA, γ, I); // Alg. 4

17 return LLCA;

full alignment

prefix alignment
alignprefix (T, ⟨⟩)

postfix alignment

alignopt
postfix (T, σnext) (cf. Fig. 5c)

1 2 . . . 11 12 13 14 15 16 17 18 19 20

≫ ≫ . . . ≫ ≫ ≫ a a f ≫ ≫ end ≫
(r′,
open

(n′
s,

start)
. . .

(n1.1,
close)

(n1.2,
open)

(n2.3,
e)

(n2.4,
a)

≫ (n2.5,
f)

(n1.2,
close)

(n0,
close)

(n′
e,

end)
(r′,
close

TLCA

opens
−−−−−−−−−−−−−−−−→ TLCA

closes

Fig. 7: Extending the postfix alignment from the running example (cf. Fig. 5c)

Consider alignment γ from the running example (cf. Fig. 5c). Its first and only
deviation is at the second move, surrounded by two synchronous moves represent-
ing the execution of node n2.4 and n2.5. Thus, we compute LCAT (n2.4, n2.5) =
n1.2, and return subtree TLCA rooted at n1.2 (cf. Fig. 5d) because this subtree
does not support executing two a activities, as indicated by γ.

4.3 Sub-log Calculation for Detected Subtree

Alg. 3 describes the sub-log calculation SubLog called in Alg. 1 line 4 for the
determined subtree TLCA. The output of the sub-log calculation is an event log
LLCA that the determined subtree TLCA must support. To this end, all traces
and trace fragments including σnext are aligned with T ⊒ TLCA to identify the
corresponding sub-traces that TLCA must support.

For example, consider postfix alignment γ (cf. Fig. 5c) and TLCA with root
node n1.2 (cf. Fig. 5d). Adding σnext=⟨a, a, f⟩ to sub-log LLCA would result in an
unnecessary imprecise subtree because when replacing TLCA by a rediscovered
tree from LLCA, activity e would be optional. However, no previously added
trace (fragment) nor σnext requires activity e being optional. Thus, we extend
postfix alignment γ to a full one such that TLCA is fully executed within the

Incremental Discovery of Process Models Using Trace Fragments 13

Algorithm 4: ExtractSubTraces (called in Alg. 3)

input : TLCA=(VLCA, ELCA, λLCA, rLCA) ⊑ T, γ∈Γfull (T, σ), I ⊆ {1, . . . , |γ|}
output: L ⊆ B(A∗) // sub-log for TLCA

begin
1 L = []; // initialize sub-log for TLCA

forall 1≤i≤|γ| do // iterate over alignment moves
2 σ′ ← ⟨⟩;
3 if VLCA = {rLCA} then // TLCA is leaf node
4 while modelNode(γ(i)) ̸= rLCA do
5 if γ(i) is log move then
6 σ′ ← σ′ · ⟨traceLabel(γ(i))⟩; // add log moves

7 i← i+1;

if modelNode(γ(i)) = rLCA then // rLCA is executed
8 σ′ ← σ′ · ⟨modelLabel(γ(i))⟩; // modelLabel(γ(i)) = λLCA(rLCA)

9 if ∀i<j≤|γ|
(
γ(j) is neither a sync. nor an invisible model move

)
then

10 σ′ ← σ′ ·
〈
traceLabel(γ(j)), . . . , traceLabel(γ(|γ|))

〉
↓A

;

11 L← L ⊎ [σ′];

12 else // TLCA is a subtree with more than one node
13 if modelNode(γ(i)) = rLCA ∧ modelLabel(γ(i)) = open then
14 while modelNode(γ(i)) ̸= rLCA ∨ modelLabel(γ(i)) ̸= close do

// consider all subsequent moves until rLCA is closed
15 if modelNode(γ(i))∈VLCA ∧

[
γ(i) is synchronous move ∨(

γ(i) is visible model move ∧ i/∈I
)]

then
16 σ′ ← σ′ · ⟨modelLabel(γ(i))⟩;

else if traceLabel(γ(i)) ∈ A then
17 σ′ ← σ′ · ⟨traceLabel(γ(i))⟩;
18 i← i+1;

19 L← L ⊎ [σ′];

20 return L;

model part. Fig. 7 exemplifies such an extension of γ. For each full execution of
TLCA, we generate a sub-trace. TLCA is opened in move 12, and closed in move
17. All moves in between that represent the execution of a leaf node (i.e., move
13, 14, and 16) are contained in TLCA. Thus, we add the sub-trace ⟨e, a, a, f⟩ to
LLCA. We proceed similarly for previously added traces and trace fragments.

Alg. 3 provides the sub-log calculation. For full traces, we calculate a full
alignment (line 4) and extract the corresponding sub-traces. For trace fragments,
we compute a corresponding prefix/infix/postfix alignment and expand this into
a full alignment, as exemplified in Fig. 7. Extending to full alignments is required
as TLCA might span larger parts of the process and hence might be only partially
executed within the prefix/infix/postfix alignment. For instance, consider Fig. 7.
The depicted postfix alignment does not contain a full execution of TLCA.

Alg. 4 defines the extraction of sub-trace(s) for TLCA from full alignments.
If TLCA is a leaf node (line 3), we add all log moves until TLCA is executed.
If afterwards TLCA is never executed again, potential log moves after the last
execution of TLCA are also added to the sub-trace σ′. Thus, per execution of
TLCA one sub-trace is added to L. Note that log moves only occur for the trace
to be added, for all other previously added traces/trace fragments log moves do
not occur in γ. If TLCA is a leaf node (line 12), we search for the opening of

14 D. Schuster et al.

TLCA (line 13). All activities from visible model/synchronous moves that belong
to TLCA (line 16) and log moves (line 17) are added to σ′ until TLCA is closed.

5 Evaluation

We present an initial evaluation of the proposed trace-fragment-supporting IPD
approach. The central goal of the evaluation is to showcase that distinguishing
trace fragments from full traces within IPD leads to comparable or even better
process models than classic IPD [17], considering all traces as full ones.

5.1 Experimental Setup

We compare trace-fragment-supporting IPD (TFS-IPD) with IPD [17] and au-
tomated conventional process discovery algorithms: Inductive Miner (IM) [13],
IM infrequent (IMf) [13], and evolutionary tree miner (ETM) [8]. All listed ap-
proaches discover process trees. We use publicly available real-life event logs.4

Note that event logs generally consider all traces recorded as full traces. Thus,
to obtain trace fragments, we proceed as follows.

1. Removing cases containing events in the first or last 20% of the period cov-
ered by the event log (objective: filtering incomplete traces)

2. Iterating over remaining traces. With probability 1
2 we alter a full trace.

If so, we apply with probability 1
3 one of the following options (for x =

max{1, 20% avg. trace length}).
(a) we remove the first x activities (results in a trace prefix)

(b) we remove the last x activities (results in a trace postfix)

(c) we remove the first x and last x activities (results in a trace infix)

If the above procedure yields empty traces or empty trace fragments, we
ignore them. We calculate fitness and precision using the log after the first step,
as described above. For (TFS-)IPD, we discover an initial model from the 1%
most frequent full trace variants using IM. The source code of our experiments,
of (TFS-)IPD, and further results are available online.5

5.2 Results

Fig. 8 compares IPD with TFS-IPD for three different event logs. Both ap-
proaches start from the identical initial model, and we add the same trace (frag-
ment) variants in the same order (starting from the most frequent one). Across
all logs, TFS-IPD significantly outperforms IPD in most cases. Especially in the
beginning, we quickly obtain models with fitness around >90% where TFS-IPD
outperforms IPD regarding precision. Note that the goal of IPD and TFS-IPD
is not to necessarily incorporate all behavior because real-life event logs often
contain noise and are, therefore, typically filtered.

4
BPI Ch. 2020–Request for Payment (DOI: 10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51)
Road Traffic Fine Management (DOI: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f)
Receipt log (DOI: 10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6)

5
https://github.com/fit-daniel-schuster/trace-fragment-supporting-incremental-process-discovery

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://github.com/fit-daniel-schuster/trace-fragment-supporting-incremental-process-discovery

Incremental Discovery of Process Models Using Trace Fragments 15

0 50 100 150 200 250 300 350
Added trace (fragment) variants

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ric

Fitness
F-Measure
Precision

0 50 100 150 200 250 300 350
Added trace (fragment) variants

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ric

Fitness
F-Measure
Precision

(a) Road Traffic Fine Management (IPD vs. TFS-IPD)

0 20 40 60 80 100 120 140
Added trace (fragment) variants

0.2

0.4

0.6

0.8

1.0

M
et

ric

Metric
Fitness
F-Measure
Precision

0 20 40 60 80 100 120 140
Added trace (fragment) variants

0.2

0.4

0.6

0.8

1.0

M
et

ric

Metric
Fitness
F-Measure
Precision

(b) BPI CH. 2020–Request for Payment (IPD vs. TFS-IPD)

0 20 40 60 80 100 120
Added trace (fragment) variants

0.2

0.4

0.6

0.8

1.0

M
et

ric

Fitness
F-Measure
Precision

0 20 40 60 80 100 120
Added trace (fragment) variants

0.2

0.4

0.6

0.8

1.0

M
et

ric

Fitness
F-Measure
Precision

(c) Receipt of environmental permit applications (IPD vs. TFS-IPD)

Fig. 8: Comparing IPD (left) and TFS-IPD (right)

Table 1 lists the results for the different discovery approaches. Note that only
TFS-IPD distinguishes between full traces and trace fragments; other approaches
treat trace fragments as full traces. We observe that TFS-IPD often discovers
process models of similar or even higher quality regarding the metrics shown. As
expected, the more trace fragments are added by an approach, the higher the
fitness, but the precision decreases. In short, TFS-IPD often learns more precise
process models for comparable fitness values than other approaches.

6 Conclusion

We presented an IPD approach supporting trace fragments—prefix, infix, and
postfix traces. Supporting trace fragments and thus incomplete data within pro-
cess discovery is a novelty, as the general practice regarding trace fragments
usually focuses on filtering or considering fragments as full traces. We have im-

16 D. Schuster et al.

Table 1: Model quality metrics rounded to two decimal points for the different
approaches and different percentage values of added trace (fragment) variants

Event log

Approach

%
o
f
a
d
d
e
d

tr
a
c
e

(f
ra

g
m
e
n
t)

v
a
ri
a
n
ts

Road Traffic
Fine Management

BPI Ch. 2020–Re-
quest for Payment

Receipt of environmental
permit applications

F
-m

e
a
su

re

fi
tn

e
ss

p
re
c
is
io
n

F
-m

e
a
su

re

fi
tn

e
ss

p
re
c
is
io
n

F
-m

e
a
su

re

fi
tn

e
ss

p
re
c
is
io
n

Trace-fragment-
supporting IPD

20 0.87 1.00 0.77 0.75 0.99 0.60 0.82 0.97 0.70
40 0.87 1.00 0.77 0.68 1.00 0.51 0.48 0.99 0.31
60 0.80 1.00 0.67 0.51 1.00 0.34 0.33 1.00 0.20
80 0.71 1.00 0.55 0.39 1.00 0.25 0.33 1.00 0.20
100 0.71 1.00 0.55 0.39 1.00 0.25 0.31 1.00 0.19

IPD [17]

20 0.73 1.00 0.58 0.72 0.98 0.57 0.64 0.97 0.48
40 0.73 1.00 0.58 0.72 0.98 0.57 0.40 0.99 0.25
60 0.70 1.00 0.54 0.49 1.00 0.32 0.45 1.00 0.29
80 0.70 1.00 0.54 0.45 1.00 0.29 0.45 1.00 0.29
100 0.70 1.00 0.54 0.46 1.00 0.30 0.45 1.00 0.29

IM [13]

20 0.76 1.00 0.61 0.63 1.00 0.46 0.76 0.97 0.62
40 0.72 1.00 0.57 0.68 1.00 0.24 0.42 0.84 0.28
60 0.56 1.00 0.39 0.44 1.00 0.28 0.25 1.00 0.15
80 0.65 1.00 0.48 0.39 1.00 0.24 0.28 1.00 0.17
100 0.67 1.00 0.50 0.37 1.00 0.23 0.33 1.00 0.20

IMf (0.9) [13]

20 0.81 0.78 0.84 0.52 0.54 0.50 0.76 0.97 0.62
40 0.81 0.78 0.84 0.26 0.64 0.17 0.42 0.84 0.28
60 0.75 0.66 0.86 0.17 0.65 0.10 0.25 1.00 0.15
80 0.71 0.66 0.77 0.43 0.86 0.29 0.28 1.00 0.17
100 0.71 0.66 0.77 0.17 0.64 0.10 0.33 1.00 0.20

ETM
(default settings,
60s timeout) [8]

20 0.51 0.99 0.34 0.68 0.92 0.54 0.75 0.90 0.64
40 0.51 1.00 0.34 0.69 0.97 0.53 0.71 0.86 0.60
60 0.82 0.77 0.89 0.63 0.96 0.47 0.60 0.87 0.46
80 0.54 0.98 0.38 0.69 0.95 0.54 0.62 0.87 0.48
100 0.52 0.98 0.35 0.64 0.96 0.48 0.67 0.87 0.54

plemented the proposed approach, including functionalities for handling trace
fragments, in the open-source process mining tool Cortado [20]. Our experimen-
tal results indicate distinguishing trace fragments from full traces leads to high-
quality models. While this paper focused on the foundational algorithmic aspects
of supporting trace fragments in IPD, we plan to conduct a case study to in-
vestigate how process analysts can utilize trace fragments in real-world settings.
Further, we plan to extend the sub-model freezing functionality for IPD [18] to
support trace fragments as well.

References

1. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Eindhoven
University of Technology (2014)

2. Armas Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., Garćıa-
Bañuelos, L.: Interactive and incremental business process model repair. In: On
the Move to Meaningful Internet Systems, LNCS, vol. 10573. Springer (2017)

Incremental Discovery of Process Models Using Trace Fragments 17

3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE TKDE 31(4) (2019)

4. Beerepoot, I., et al.: The biggest business process management problems to solve
before we die. Computers in Industry 146 (2023)

5. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Business Process Management, LNCS, vol. 4714. Springer (2007)

6. Bernard, G., Andritsos, P.: Truncated trace classifier. removal of incomplete traces
from event logs. In: Enterprise, Business-Process and Information Systems Model-
ing, LNBIP, vol. 387. Springer (2020)

7. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using pro-
cess mining. In: Enterprise, Business-Process and Information Systems Modeling,
LNBIP, vol. 29. Springer (2009)

8. Buijs, J., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for dis-
covering process trees. In: Congress on Evolutionary Computation. IEEE (2012)

9. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking.
Springer (2018)

10. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy : Human-in-the-loop
process discovery. In: 12th International Conference on Research Challenges in
Information Science (RCIS). IEEE (2018)

11. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality.
In: Business Process Management, LNCS, vol. 7481. Springer (2012)

12. Greco, G., Guzzo, A., Lupia, F., Pontieri, L.: Process discovery under precedence
constraints. ACM Transactions on Knowledge Discovery from Data 9(4) (2015)

13. Leemans, S.J.J.: Robust Process Mining with Guarantees. Springer (2022)
14. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.:

Impact-driven process model repair. ACM Transactions on Software Engineering
and Methodology 25(4) (2017)

15. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer (2012)

16. Schuster, D., Föcking, N., van Zelst, S.J., van der Aalst, W.M.P.: Conformance
checking for trace fragments using infix and postfix alignments. In: Cooperative
Information Systems, LNCS, vol. 13591. Springer (2022)

17. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: RCIS, LNBIP, vol. 385. Springer (2020)

18. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Freezing sub-models during in-
cremental process discovery. In: Conceptual Modeling, LNCS, vol. 13011. Springer
(2021)

19. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Utilizing domain knowledge
in data-driven process discovery: A literature review. Computers in Industry 137
(2022)

20. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado: A dedicated process
mining tool for interactive process discovery. SoftwareX 22 (2023)

21. Solé, M., Carmona, J.: Incremental process discovery. In: Transactions on Petri
Nets and Other Models of Concurrency V, LNCS, vol. 6900. Springer (2012)

22. van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process mining: Overview
and outlook of Petri net discovery algorithms. In: Transactions on Petri Nets and
Other Models of Concurrency II, LNCS, vol. 5460. Springer (2009)

23. de Weerdt, J., de Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Information Systems 37(7) (2012)

	Incremental Discovery of Process Models Using Trace Fragments

