
Event Abstraction for Partial Order Patterns

Chiao-Yun Li1,2, Sebastiaan J. van Zelst2,1, and Wil M.P. van der Aalst1,2

1 RWTH Aachen University, Aachen, Germany
{chiaoyun.li,wvdaalst}@pads.rwth-aachen.de

2 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany
sebastiaan.van.zelst@fit.fraunhofer.de

Abstract. Process mining endeavors to extract fact-based insights into
processes based on event data stored in information systems. Due to
the variety of processes in different fields and organizations, there does
not exist a universal technique to allow for putting the process mining
outcome directly into action. Various techniques have been developed to
support human analysis. Meanwhile, as raw event data are often pro-
vided at the system level, the abstraction principle is applied to “lift”
the data to a higher level for human interpretation, which is called event
abstraction. Owing to the limitation of the information systems deployed
in practice, most abstraction techniques are developed based on the as-
sumption that all process activities are performed sequentially, ignoring
the fact that there may be activities performed concurrently or the rela-
tion of the activity executions could not be clearly defined. In this paper,
we propose an event abstraction framework based on partial order pat-
terns. We extract the candidate pattern instances and abstract event
data based on the pattern instances identified. Moreover, we instantiate
the framework and optimize the implementation. The framework is eval-
uated with synthetic event data, and a case study based on a real-life
process is performed, demonstrating the applicability of the framework.

Keywords: Process mining · Event abstraction · Partial orders.

1 Introduction

Modern organizations rely on business processes executed with the support of
information systems, which generate event data recorded during process execu-
tion. Process mining aims to extract valuable insights from such event data [2].
Numerous process mining techniques were developed to gain insights into various
aspects; process discovery reveals the actual behavior of a process, which is often
represented with a process model [4]; conformance checking identifies deviations
in a process [6]; performance analysis detects inefficiencies and bottlenecks in a
process [7]; process enhancement attempts to enhance a process model based on
factual insights discovered [20].

To turn process mining results into actionable insights, the outcomes must
be interpretable for humans, which is often achieved through the use of a process
model annotated with relevant information for a limited number of activities.

2 Chiao-Yun Li et al.

Fig. 1: A process model discovered based on real-life event data [19], which ab-
stracts the behavior of 36 activities executed in 4, 366 ways in a process instance.

Typically, process mining techniques are directly applied to raw event data, i.e.,
event data as recorded in information systems, resulting in outcomes that may
be too detailed or complex for human analysts as shown in Figure 1, which
is impossible for humans to derive valuable insights without going into detail.
Due to the highly flexible and complex nature of real-life processes, the field
of event abstraction emerged to abstract event data to a higher level based on
the predefined or identified regularity of the execution of activities, i.e., well-
defined process steps, for human interpretability. By abstracting event data to
a higher level, the complexity is simplified, allowing stakeholders to understand
and interpret the results.

As most information systems deployed in practice support sequence data,
event data are often structured as a total order of the execution of activities.
Consequently, most event abstraction techniques are developed based on the
assumption that activities are executed sequentially. In practice, activities can
be executed concurrently, e.g., when a person multitasks, and/or the order of
executions cannot be clearly defined, e.g., when the executions are recorded at
the granularity of days, which leads to partially ordered event data.

We propose a framework to extract patterns from partially ordered event data.
By leveraging a pattern class defined by domain experts as an expected relation
of the execution of concepts, e.g., activities, in a process, the framework identifies
the corresponding pattern instances, i.e., the executions of the pattern class. The
abstraction is achieved by aggregating pattern instances; thereby, the framework
can be iteratively applied to construct a hierarchy of abstractions. We initiate
and implement the framework with a generic approach for identifying pattern
instances. Furthermore, we optimize the framework for extracting candidate pat-
tern instances, i.e., potential sets of event data that may be pattern instances.
We apply the framework to synthetic event data and experiment with the effect
of noises. To demonstrate the applicability, we conduct a case study based on
real-life event data based on the abstraction obtained with the framework.

Event Abstraction for Partial Order Patterns 3

Table 1: A running example of partially ordered event data. Every row is a record
representing an activity instance characterized by its identifier (AID), the iden-
tifier of the process instance it belongs to (cid), the activity name (Activity),
and the duration of the execution (Start and Complete Timestamp).

cid Activity (Abbre.) AID Start Timestamp Complete Timestamp

1 Get Appointment (A) 1 2021-03-26 10:36:09 2021-03-26 10:36:09
1 Consult (C) 2 2021-03-26 11:07:53 2021-03-26 11:20:23
1 Review History (R) 3 2021-03-26 11:07:07 2021-03-26 11:22:10
1 Phlebotomize (P) 4 2021-03-26 13:36:16 2021-03-26 13:39:27
1 Conduct Lab Test (L) 5 2021-03-29 00:00:00 2021-04-04 00:00:00
1 Conduct Lab Test (L) 6 2021-03-29 00:00:00 2021-04-04 00:00:00
1 Diagnose (D) 7 2021-04-09 15:32:02 2021-04-09 15:47:20
1 Provide Treatment (T) 8 2021-04-15 00:00:00 2022-05-22 00:00:00
1 Provide Treatment (T) 9 2021-05-04 00:00:00 2022-05-26 00:00:00
1 Provide Treatment (T) 10 2021-05-22 00:00:00 2022-09-03 00:00:00
1 Phlebotomize (P) 11 2022-09-08 20:09:40 2022-09-08 20:11:51
1 Conduct Lab Test (L) 12 2022-09-11 00:00:00 2022-09-17 00:00:00
1 Conduct Lab Test (L) 13 2022-09-13 00:00:00 2022-09-18 00:00:00
1 Evaluate (E) 14 2022-09-21 05:04:36 2022-09-21 05:32:15

The paper is structured as follows. A running example is presented in Sec-
tion 2. Section 3 introduces the mathematical concepts, which are applied to
define the framework in Section 4. We introduce the implementation in Sec-
tion 5 and show the experiments in Section 6. Finally, we review related work
in Section 7 and discuss future directions in Section 8.

2 Running Example - A Treatment Procedure

Table 1 presents an excerpt of synthetic event data, which serves as a running
example that we use throughout the paper. Every row represents an activity
instance. The table records the activities executed in a treatment procedure of
a patient. After the patient got an appointment at 10:36:09, he/she consulted
the general practitioner and the practitioner reviewed the medical history of the
patient at the same time. Then, a nurse phlebotomized the patient and sent the
blood samples to two laboratories for different hematological tests. The reports
were then sent back to the general practitioner for a diagnosis. Based on the
outcome, the patient was sent to three specialists for further treatment. After
roughly 1 year of treatment, the same blood tests are conducted again and the
outcome of treatment is evaluated.

4 Chiao-Yun Li et al.

In Table 1, Get Appointment is executed in a time moment, as is often
assumed in classical event data; Conduct Lab Test and Provide Treatment are
recorded at the granularity of days, which causes unclear ordering, e.g., the two
lab tests conducted at the first time; other activities are executed and recorded
in time duration. Due to the time interleaving and different granularity recorded,
such data form partially ordered event data1, requiring a different abstraction
mechanism compared to sequentially ordered event data.

Fig. 2: Visualization
of a pattern class.

Figure 2 visualizes a pattern class, assumed to be pro-
vided by domain experts, which specifies that two lab tests
must be performed concurrently after phlebotomization.
By representing an activity instance with its abbreviated
activity and its identifier as a subscript, we can extract
three sets of activity instances in Table 1 given the pat-
tern class: {P4, L5, L6}, {P11, L12, L13}, and {P4, L12, L13}.
Every set of activity instances forms a pattern instance.
As the blood sample phlebotomized with P4 is used for L5
and L6, and the blood sample collected with P11 is used
for L12 and L13, we characterize the former two pattern
instances as local pattern instances.

3 Preliminaries

Let X be an arbitrary set. P(X) = {X ′ | X ′⊆X} denotes the powerset of X
and |X| denotes the number of elements in X. A sequence over X is a function
σ : {1, 2, ..., n} → X, where σ is written as ⟨x1, x2, . . . , xn⟩. A strict partial order
is a binary relation ≺ on X, written as (X,≺), which is irreflexive (∀x ∈ X,x ⊀
x), asymmetric (∀x, y ∈ X,x ≺ y =⇒ x ̸= y), and transitive (∀x, y, z ∈
X,x ≺ y ∧ y ≺ z =⇒ x ≺ z). (X,≺·) denotes the covering relation of (X,≺)
such that ∀x1, x2 ∈ X(x1 ≺ x2), we write x1 ≺· x2 if and only if ∄x′ ∈ X(x1 ≺
x′ ∧ x′ ≺ x2). For simplicity, we write (X,≺) = X as the shorthand for the
elements in (X,≺) and refer to a strict partial order as a partial order.

Given an arbitrary set X, l is a function of X to a set of labels; a partial order
onX with such a function is called a labeled partial order and written as (X,≺, l).
Let X and Y be two arbitrary sets. Given (X,≺, lX) and (Y,≺, lY), (X,≺, lX)
and (Y,≺, lY) are label-preserving isomorphic, denoted as (X,≺, lX)≃(Y,≺, lY),
iff there exists a bijective relation b : X → Y s.t. ∀x1, x2 ∈ X,x1 ≺ x2 ⇐⇒
b(x1) ≺ b(x2), and ∀x ∈ X, lX(x) = lY (b(x)).

Let (X,≺, l) be a labeled partial order on an arbitrary set X. Let z be an
arbitrary element, where z /∈ X, and lz is a labeling function of z. The function
ADD((X,≺, l), z, lz) adds z into (X,≺, l) s.t. ADD((X,≺, l), z, lz) = (X ′,≺′, l′)
where X ′ = X ∪ {z}, ≺′=≺ ∪(X × {z}).

1A collection of time intervals must be a partial order; nevertheless, the proposed frame-
work is based on partial orders, which is more generically applicable. The example is
provided with timestamps as a motivating example.

Event Abstraction for Partial Order Patterns 5

Fig. 3: Visualization of the covering relation of the activity instances in Table 1.

Definition 1 (Event Data). A case is a process instance. Ucon is the universe
of concepts defined in a process, e.g., an activity; Uinst is the universe of the
instances, e.g., an activity instance; Ucid is the universe of case identifiers. A
log, L = (CI,≺, πcon, πcid), where

– CI ⊆ Uinst is a set of instances;
– ≺ = CI× CI is a partial order on CI;
– πcon : CI → Ucon, where πcon(ci) is the concept of an instance ci ∈ CI;
– πcid : CI → Ucid, where πcid(ci) is the identifier of the case that an instance

ci ∈ CI belongs to.

We let CID(L) = {πcid(ci) | ci ∈ CI} denote the case identifiers in L. Given
c ∈ CID(L), CIc = {ci ∈ CI | πcid(ci) = c} and cL = (CIc,≺c), where ≺c =
≺ ∩ (CIc × CIc).

Figure 3 visualizes the covering relation of the instances in the case in Ta-
ble 1. Every node represents an instance, which is labeled with its identifier as
a subscript and the corresponding (abbreviated) concept, i.e., the activity. The
arrows indicate the covering relation among the instances.

4 Framework

We introduce and define the framework in this section. First, we outline the
mechanism of the proposed framework in Section 4.1. Based on the mathemati-
cal notations introduced, we define a pattern class and the corresponding pattern
instances in Section 4.2. The extraction of candidate pattern instances is intro-
duced in Section 4.3. Finally, we detail the abstraction with the identification of
pattern instances in Section 4.4.

4.1 Overview

Figure 4 presents a schematic overview of the proposed framework. We assume
that a log with partially ordered event data is provided. A pattern class can be
defined by a domain expert or with the knowledge obtained during the explo-
ration of the log. Given a pattern class, the framework exhaustively extracts all
the candidate pattern instances in the log. Next, one identifies partial orders of
pattern instances from the candidate pattern instances where the relationship
between the identified pattern instances is defined in a flexible manner. Finally,

6 Chiao-Yun Li et al.

Fig. 4: A schematic overview of the framework. There are three key steps in the
framework, the extraction of candidate pattern instances, the identification of
partial orders of pattern instances, and the abstraction based on the pattern
class.

an abstracted log based on the pattern class is constructed. Since the pattern
class and the extraction and the identification of pattern instances support par-
tially ordered event data, the proposed framework can be iteratively applied to
the abstracted log based on another pattern class.

4.2 Pattern Class and Pattern Instance

A pattern class is an expected relation of the execution of concepts; a pattern
instance is, intuitively, a set of instances that adhere to the expectation. We
formally define a pattern class as follows.

Definition 2 (Pattern Class). A pattern class PC = (X,≺, l), where l : X →
Ucon, is a labeled partial order where |X| ≥ 2. We assume that a pattern class is
a concept defined in a process such that PC ∈ Ucon. We say that {l(x) | x ∈ X}
are the underlying concepts of a pattern class.

A pattern instance is a labeled partial order of instances that is label-preserved
isomorphic to a pattern class as defined below.

Definition 3 (Pattern Instance). Let L be a log. Given c ∈ CID(L), let cL =
(CIc,≺c). Given CI ⊆ cL and a pattern class PC ∈ Ucon, a pattern instance
pi = (CI,≺, πcon), where ≺ = ≺c ∩ (CI× CI), is a labeled partial order over
CI where pi ≃ PC. We assume that a pattern instance pi is an instance s.t.
pi ∈ Uinst and πp

cid : Uinst → Ucid and πp
con : Uinst → Ucon, where πp

cid(pi) = c
and πp

con(pi) = PC. We say that pi are the underlying instances of pi.

We define a pattern class with at least two elements since it is trivial with a
single element as it simply implies the projection of the label of the element on
instances. Meanwhile, with the constraint imposed on a pattern class, a pattern
instance consists of at least two instances. Note that a pattern instance is defined
in the context of a case and the definition above allows for the extraction of a
pattern instance where the relations of the underlying instances are undefined.
Figure 5 presents the pattern instances of the pattern class PC visualized in

Event Abstraction for Partial Order Patterns 7

(a) pi1 (b) pi2 (c) pi3

Fig. 5: Visualization of the pattern instances of the pattern class PC defined
in Figure 2 for the case in Table 1, where ∀1 ≤ i ≤ 3, πp

con(pii) = PC and
πp
cid(pii) = 1. Note that pi1 and pi2 are local pattern instances.

Figure 2. To differentiate with the visualization of event data, an element in a
pattern class is visualized with a square labeled with the corresponding concept;
the arrows indicate the partial order relation of the elements.

Meanwhile, a pattern instance may consist of instances that are hardly related
in practice. For example, the pattern instance pi3 visualized in Figure 5 suggests
that the lab tests are conducted based on the blood sampled one and a half
years ago. Compared to pi3, the other pattern instances, pi1 and pi2 in Figure 5,
are more likely to be the pattern instances that one has in mind. Hence, to
further identify a pattern instance with closely related instances, we characterize
a pattern instance as a local pattern instance if the underlying instances are
related based on the covering relation.

Definition 4 (Local Pattern Instance). Let pi ∈ Uinst be a pattern in-
stance. We characterize pi as a local pattern instance iff ∀ci1, cin ∈ pi(ci1 ̸= cin),
∃⟨ci1, ci2, . . . , cin⟩, where ∀1≤i≤n, cii ∈ pi and ∀1≤i<n, cii ≺· cii+1 ∨ cii+1 ≺· cii.

By iteratively applying the framework, we identify pattern instances in every
iteration. Hence, a pattern instance consists of a set of instances that may be
activity instances and/or pattern instances identified in the previous iteration.

4.3 Candidate Pattern Instances

Given a pattern class, first, we search for all the possible pattern instances of a
pattern class in a log, which we name as candidate pattern instances. Since an
instance is only related to one case, the search is performed for every case and
the collection of the candidate pattern instances identified for every case in a log
is the candidate pattern instances in the log.

Definition 5 (Candidate Pattern Instance Extraction). Let L be a log and
PC be a pattern class. Let cL = (CIc,≺c), where c ∈ CID(L). We define func-
tion EXTL : Ucid×Ucon → P(P(Uinst)× P(Uinst × Uinst)), where EXTL(c,PC) =
{can = (CI,≺, πcon) | CI ⊆ CIc,≺ = ≺c ∩ (CI× CI), can ≃ PC} denotes the candi-
date pattern instances of PC in c.

The candidate pattern instances in a case are a set of partial orders of in-
stances that are isomorphic to the pattern class. With the same example, the
partial orders of activity instances visualized in Figure 5 are extracted as the
candidate pattern instances.

8 Chiao-Yun Li et al.

4.4 Abstraction based on Patterns

We aggregate the underlying instances of a pattern instance to construct an
abstracted log. The pattern instances are identified for every case in a log and
the relation between an instance in a case and a pattern instance is inferred
from the underlying instances of the pattern instance. First, we generalize the
identification of pattern instances as follows.

Definition 6 (Pattern Instance Identification). Let L be a log and CAN be
the candidate pattern instances in c ∈ CID(L). We define the function IDENc :
P(P(Uinst)× P(Uinst × Uinst)) → P(Uinst)×P(Uinst × Uinst), where IDENc(CAN) =
(PI,≺) is a partial order of pattern instances PI ⊆ CAN in c, where ∀pi1, pi2 ∈
PI(pi1 ̸= pi2), pi1 ≺ pi2 =⇒ ∃ci ∈ pi1∀CI

′ ∈ pi2(ci ≺ ci′).

The pattern instances in a case are a subset of the candidate pattern instances
in the case. The identification can be initiated in a flexible manner while the
partial order relation of the pattern instances identified must not violate the
minimum requirement specified in Definition 6. Note that two different pattern
instances may share some underlying instances.

Figure 6 motivates the necessity of the flexible instantiation of the identifica-
tion of pattern instances. Suppose that we extract two local pattern instances pi1
and pi2 as specified in Figure 6. By simply inferring the relation of the pattern
instances based on the underlying instances, pi1 ⊀ pi2 since they share a4. How-
ever, assume that the a4 represents a milestone achieved in a waterfall process;
it is more reasonable to define the relation as pi1 ≺ pi2. Hence, we generalize the
identification of pattern instances and allow one to impose the constraints that
are applicable to the organization; nevertheless, a generic instantiation is also
implemented and introduced in the next section.

Finally, the abstraction is realized by aggregating the pattern instance identi-
fied and defining the relation between the pattern instances and other instances.

Definition 7 (Abstraction). Let L = (CI,≺, πcon, πcid) be a log. Let PIL =
{pi | c ∈ CID(L) : πp

cid(pi) = c} be the pattern instances in L; ≺p= PIL × PIL de-
notes the partial order on PIL. Given CIrst = CI \

⋃
pi∈PIL

pi and ≺rst = ≺ ∩
(CIrst × CIrst), i.e., the partial order of instances that are not in any pattern in-
stances. An abstracted log, L′ = (CI′,≺′, π′

con, π
′
cid), is a log derived from L where

(a) Visualization of the covering relation of a case
and the pattern instances identified. (b) A pattern class.

Fig. 6: A motivating example of pattern instance identification, where the iden-
tified pattern instances, pi1 and pi2, are annotated and pi1 ≺ pi2.

Event Abstraction for Partial Order Patterns 9

– CI′ = CIrst ∪ PIL is a set of instances;
– ≺′ = ≺rst ∪≺p ∪ (CIrst × PIL) is a partial order on CI′, where ∀ci ∈ CIrst∀pi ∈

PIL(πcid(ci) = πp
cid(pi)), ci ≺ pi ⇐⇒ ∀ci′ ∈ pi(ci ≺ ci′) and pi ≺ ci ⇐⇒

∀ci′ ∈ pi(ci′ ≺ ci);

– π′
con : CI

′ → Ucon, where ∀ci ∈ CI′, ci ∈ CIrst ⇐⇒ π′
con(ci) = πcon(ci) ∧

ci ∈ PIL ⇐⇒ π′
con(ci) = πp

con(ci);
– π′

cid : CI
′ → Ucid, where ∀ci ∈ CI′, ci ∈ CIrst ⇐⇒ π′

cid(ci) = πcid(ci) ∧
ci ∈ PIL ⇐⇒ π′

cid(ci) = πp
cid(ci).

We define the key artifacts, i.e., a pattern class and a pattern instance, in
this section. We further impose constraints on the relation among the underlying
instances of a pattern instance to identify pattern instances that could be more
suitable under certain circumstances in practice. The proposed framework is
introduced and illustrated with the running example described in Section 2.

5 Implementation

In this section, we present the implementation of the framework. We explain the
implementation of candidate pattern instances extraction in Section 5.1, followed
by the extraction of local pattern instances in Section 5.2. A generic method to
identify pattern instances is introduced in Section 5.3.

5.1 Extracting Candidate Pattern Instances

To extract the candidate pattern instances in a case, we incrementally add in-
stances to a partial order of instances in the case and check for isomorphism
between the instances selected and a pattern class. Let PC = (X,≺, l) be a
pattern class and L be a log. Given a case c ∈ CID(L), cL = (CIc,≺c). Given
CI ⊆ CIc and ≺po = ≺c ∩ (CI× CI), we let po = (CI,≺po, πcon). We define the
following functions:

– INIT : P(Uinst) × P(Uinst × Uinst) → P(P(Uinst)× P(Uinst × Uinst)), where
INIT(cL) initiates a set of partial orders of instances to be extended where
∀(CI′,≺′) ∈ INIT(cL), CI

′ ⊆ CIc and ≺′ = ≺c ∩ (CI′ × CI′).
– SEL : P(Uinst)×P(Uinst × Uinst)×P(Uinst)×P(Uinst × Uinst) → P(Uinst),

where SEL(po, cL) ⊆ CIc selects a set of instances to be added into po where
∀ci ∈ SEL(po, cL), ci /∈ po.

– CHECK : P(Uinst)× P(Uinst × Uinst)× Uinst × Ucon → {true, false}, where
CHECK(po, ci,PC) checks if adding ci ∈ CIc into po may form a candidate
pattern instance of PC, i.e., let po′ = ADD(po, ci, πcon), CHECK(po, ci,PC) =
true iff ∃X ′ ⊆ PC(|X ′| ≥ 1∧po′ ≃ (X ′,≺X′ , l)), where≺X′ = ≺ ∩ (X ′ ×X ′);
if X ′ = PC, po′ forms a candidate pattern instance.

Algorithm 1 illustrates the implementation of EXTL(c,PC) in Definition 5
with the three key functions defined. The algorithm initiates a set of partial or-
ders of instances and incrementally adds other instances. If there are no instances

10 Chiao-Yun Li et al.

to be added such that it may form a candidate pattern instance of the input
pattern class in the later iteration, we discard the partial order of instances.
Otherwise, we check if the instances form a candidate pattern instance. If so,
the instances form a candidate pattern instance, or the partial order of instances
is added back to the open items to be checked in the next iteration.

A (labeled) partial order can be easily converted into a (labeled) directed
acyclic graph (DAG). By representing a partial order of instances and a pat-
tern class as labeled DAGs, we apply graph edit distance [17], i.e., a measure of
similarity between two graphs that searches for the minimal cost of graph oper-
ations to make one graph isomorphic to the other, to check for the isomorphism
between two partial orders.

Algorithm 1 Candidate Pattern Instance Extraction

Input: case c ∈ CID(L), a pattern class PC ∈ Ucon
Output: a collection of candidate pattern instances of PC in c, i.e., candidates
1: cL = (CIc,≺c)
2: open← INIT(cL) ▷ a set of partial orders of instances
3: candidates← {} ▷ an empty set to collect candidate pattern instances
4: while open do
5: po← open.pop()
6: CI′ ← SEL(po, cL) ▷ instances to add incrementally
7: for ci ∈ CI′ do
8: if CHECK(po, ci,PC) then ▷ if po can be a potential candidate

▷ pattern instance of PC by adding ci
9: po′ ← ADD(po, ci, πcon)
10: if po′ ≃ PC then
11: candidates.add(po′)
12: else
13: open.add(po′) ▷ add po′ back to open for the next iteration
14: end if
15: end if
16: end for
17: end while

Optimization. We optimize the implementation by reducing the search space
while ensuring that the relation among the instances is not altered. The optimiza-
tion of the algorithm can be easily achieved by directly projecting the relevant
instances in a case, i.e., the instance of the underlying concepts of a pattern
class, since the relation among the instances remains after the projection.

5.2 Extracting Local Pattern Instances

The local pattern instances may be extracted by selecting from the pattern
instances identified. Alternatively, we search for candidate pattern instances with

Event Abstraction for Partial Order Patterns 11

the property of local pattern instances. The search of local pattern instances may
be implemented in a similar way as described in Algorithm 1, however, with the
isomorphism check based on the covering relation of partial orders. The check
is realized by representing the covering relation of a partial order with a DAG,
which is the transitive reduction of the DAG representing the partial order.

Nevertheless, the optimization of the search cannot be performed in the
same way as the projection of relevant instances may result in missing rela-
tions in the graph representing the covering relation of a partial order. Hence,
we must ensure the connectivity of the covering relation of a partial order of
instances. Let PC = (X,≺, l) be a pattern class. Given start activities SA =
{l(x) | x ∈ X,∄x′ ∈ X(x′ ≺ x)}, we add an artificial start node and the relation
from the start node to every node labeled with activity in SA to the graph rep-
resenting a case. We remove a node if there does not exist an undirected path
from the start node to the node. Then, the projection of relevant instances may
be performed and we optimize the search with the bread-first search strategy.

5.3 Identification of Pattern Instances

One may impose semantic constraints on IDENc to identify pattern instances.
Alternatively, for a generic application of the framework, we implement IDENc

by introducing an overlapping threshold t ∈ R, where 0 ≤ t < 1. Let L be a
log and CAN denote the candidate pattern instances in a case c ∈ CID(L). For
any pi1, pi1 ∈ IDENc(CAN), |pi1 ∩ pi2|/|pi1 ∪ pi2| ≤ t; if t = 0, a set of disjoint
candidate pattern instances are identified as pattern instances. We determine
the relation between pi1 and pi2 based on the majority relation of the non-
shared underlying instances, i.e., given CI1 = pi1 \ pi2 and CI2 = pi2 \ pi1, pi1 ≺
pi2 ⇐⇒ |{ci1 ∈ CI1 | ci2 ∈ CI2(ci1 ≺ ci2)}|/|CI1| > 0.5; note that we assume that
πp
con(pi1) = πp

con(pi2) s.t. |CI1| = |CI2|. The instantiation is non-deterministic.
The abstraction, based on the given pattern instances and their relation, is

straightforward to implement, following the guidelines outlined in Definition 7.
As a result, an abstracted log is computed based on the pattern class, which
serves as the input for the subsequent iteration of another pattern class.

6 Experiments

In this section, we present the application of the proposed framework with a
synthetic log and conduct a case study based on a real-life log [19].

6.1 Evaluation

We construct a partially ordered log containing 5, 000 cases based on the process
in Figure 7, from which Table 1 is extracted. We evaluate the proposed framework
in three aspects: the number of pattern instances selected, the performance with
optimization applied, and the quality metrics of the process models discovered.

12 Chiao-Yun Li et al.

Fig. 7: A process model used for generating the synthetic log. The model is
represented with BPMN [1]. The labels correspond to the abbreviation of activity
labels in Table 1.

Defining Pattern Classes. We define four pattern classes. Let the pattern
class visualized in Figure 2 be pattern class PC2; other pattern classes are visu-
alized in Figure 8. We identify local pattern instances for PC1 (Figure 8a) and
PC2 (Figure 2). The pattern class PC3 defined in Figure 8b consists of three
concurrent Provide Treatment. The pattern class PC4 is defined by other pattern
classes and activity Diagnose (D). As the framework abstracts a log based on
one pattern class at a time, the numbers indicate the corresponding iteration.

Experimental Setup. Inspired by [12], we evaluate the impact of noises on
the proposed framework. We inject n%, where n ∈ {10, 20, 30}, of noises to the
log by injecting n% of noises to every case as illustrated in Algorithm 2. We
randomly select n% of instances in a case and swap the relation with one of the
directly succeeding instance for every instance selected, i.e., given an instance
ci, we select an instance ci′(ci ̸= ci′), where ci ≺· ci′, and swap the relation. For
discovering the process models, we applied Inductive Miner - Infrequent with a
noise threshold of 0.2 [8].

Figure 9 shows the number of pattern instances identified for every pattern
class. Since the first three pattern classes do not share common activity labels,
the number of pattern instances extracted is independent; however, the number
of pattern instances of Treatment Process (PC4) dramatically decreases since
the pattern class is defined based on other pattern classes; hence, the number of
pattern instances abstracted is also limited to the number of pattern instances of
other pattern classes. The number of pattern instances identified for PC2 is much
higher than other pattern classes since the pattern class can be conducted several
times in a case. In addition, with the percentage of noise injected increasing, the

(a) Basic Consultation (PC1) (b) Treatment (PC3) (c) Treatment Process (PC4)

Fig. 8: Pattern classes defined for synthetic log. Abbreviated labels are provided
for simplicity. Note that PC4 is defined based on PC2, PC3, and Diagnose.

Event Abstraction for Partial Order Patterns 13

Algorithm 2 Noise Injection of Case

Input: case c ∈ CID(L), a noise percentage n ∈ {10%, 20%, 30%}
Output: case with noise c′ = (CI′,≺′)
1: c′ = (CIc,≺c) ▷ initiate a partial order of instances in case c
2: cnt← floor(|CIc| × n) ▷ number of pairs of instances to swap
3: CI← randomly select cnt instances ▷ CI ⊆ CIc, where |CI| = cnt
4: for ci ∈ CI do
5: ci′ ← SelectFollowingNeighbor(ci, cL) ▷ ci ≺· ci′
6: c′ ← Swap(ci, ci′)
7: end for

number of pattern instances identified decreases because the noise alters the
relation of the instances in the log.

Figure 10 presents the average time required to abstract a case based on the
pattern classes defined. Regardless of the optimization, abstracting a case based
on a pattern class requires less than 1 second. With optimization, the runtime is
further reduced to 4 times faster; for the pattern class of Basic Consultation

(PC1), the optimization even results in 16 times faster. Meanwhile, we observe
that the abstraction based on the pattern class Treatment (PC3) is much faster
than other abstractions since the checking for isomorphism is much faster as the
graph representing the pattern class contains only isolated nodes labeled with
Provide Treatment and no relation, represented with edges in a graph, needs
to be examined.

Figure 11 reports the quality metrics of the process models discovered based
on the abstracted logs. We see that the noise has a negative impact on the fit-
ness as shown in Figure 11a. Except for the abstraction based on PC4 without
noise injection, the fitness is correlated with the number of pattern instances
abstracted as shown in Figure 9. Compared to fitness, the noise has less impact
on the precision as shown in Figure 11b. Interestingly, with more noise injected,
which causes fewer pattern instances abstracted, the precision increases. By ana-
lyzing the conformance details, we infer that it is due to the unmatched instances
that are labeled with the underlying concepts of a pattern class, which impacts
the number of instances in a case and further influences the metrics. The har-

Fig. 9: Number of pattern instances
abstracted per pattern class with dif-
ferent noise injection.

Fig. 10: Average abstraction time in
microsecond per case based on the pat-
tern classes defined.

14 Chiao-Yun Li et al.

(a) Fitness (b) Precision (c) F-measure

Fig. 11: Quality metrics of process models discovered using abstracted logs. The
ranges of the y-axis of the plots are uniformly set from 0.6 to 1.0 for comparison.

monic mean of the fitness and the precision, F-measure, as shown in Figure 11c
enhances due to the increase in fitness.

6.2 Case Study

To demonstrate the proposed framework in practice, we apply the framework
to a real-life log [19]. We preprocess the log to construct a partially ordered
log based on timestamps. We pair every start record with exactly one complete
record based on their order to construct an activity instance. The pattern classes
are defined by sets of activities indicating a successful operation. Figure 12 shows
one of the pattern classes, indicating a successful application.2

Figure 14 presents an excerpt of the analysis. The figure shows the behavior
of the process with the relative frequency projected on the visualization. The
analysis shows that, since the pattern classes are defined by sets of successful
operation occurring sequentially in a process, as the process continues, the per-
centage of successful operations also decreases. The percentage of successful end-
to-end operation, i.e., PC4, depends on the last successful operations, i.e., PC3.

Fig. 12: Successful Application (PC1),
where WC is expected to be executed
concurrently in time with activities.

Fig. 13: Number of pattern instances
abstracted per pattern class defined for
case study.

2We define PC2 as concurrent {O SENT BACK, W Nabellen offertes}, PC3 as concur-
rent {O ACCEPTED, A APPROVED, A REGISTERED, A ACTIVATED, W Valideren aanvraag},
and PC4 as a sequence of PC1, PC2, and PC3 (considering that a total order is also a
partial order).

Event Abstraction for Partial Order Patterns 15

Fig. 14: An excerpt of the analysis based on an abstracted log. The visualization
is based on IMflc [9] and the shade of color shows the relative importance based
on the number of instances identified on the path. We highlight the defined
pattern classes.

The analysis is further supported by the number of pattern instances abstracted
based on the pattern classes defined in Figure 13. Meanwhile, with abstraction,
we can easier identify and further investigate the unsuccessful executions, e.g.,
other activities shown in the excerpt. In addition, we apply the abstraction with
the technique proposed in [14], where we model the undefined relations in the
pattern classes as parallelism in the representation of the regularity defined in
the work. With the same sets of activities in the regularity defined as the pattern
classes, the technique does not identify any instances.

7 Related Work

This section discusses the research in event abstraction in the field of process
mining. Numerous event abstraction techniques focus on identifying regularity in
event data to group activities or records of activities. The authors in [18] apply
a statistical model to predict the class of a record at a higher level. Nguyen
et al. decompose a process into sets of activities by exploiting the modularity
metrics based on a graph constructed from event data [15]. In [11], the authors
apply clustering based on the features encoded from fragments of a sequence of
event data, which are seen as an instance at the higher level and are provided
with domain knowledge. The work focuses on identifying the regularity from
sequential event data with strong assumptions on a process, e.g., sensor data
and milestone existence; the identification of the instances at the higher level is
rather straightforward or ignored due to the assumption of classical event data.

To facilitate analyzing event data at a higher level, it is important that, not
only concepts at the higher level, an instance of a concept at the higher level
is also identified such that one may apply abstraction iteratively based on their
needs. Some work applies the hierarchy of concepts to construct a hierarchy of
abstractions [10,13]. In Lu et al. [13], an instance at the higher level is extracted
by projecting the relevant records. Leemans et al. apply the discovering tech-
niques to discover groups of process models at different levels and compose them
to construct a complete model at the specified level [10]; the extraction of an in-
stance is achieved with alignment [3]. The alignment is also exploited to identify
instances of the regularity identified in [14]. In Bose and van der Aalst [5], the
authors discover frequent local execution regularity and abstract accordingly.

16 Chiao-Yun Li et al.

The techniques discussed consider the iterative applicability; however, except
for simply projecting the records in [13], the extraction of the instances at the
higher level tends to be limited to local regularity.

This paper explicitly considers partially ordered event data and focuses on
the extraction of the pattern instances. For discovering the regularity, since a
pattern class and a case can be represented as labeled DAGs, we argue that ex-
isting techniques for frequent graph pattern mining may be exploited [16]. With
a pattern class defined based on partial order relation, the extraction achieves
beyond local regularity and the reliability of the abstraction can be enhanced
with the support of human analysts by providing a more comprehensible repre-
sentation, i.e., the regularity that can be directly mapped to the behavior of the
execution of concepts, e.g., activities, observed in real-life.

8 Conclusion

Motivated by the applicability of event abstraction in practice, we present and
define a framework for identifying pattern instances based on partially ordered
event data, which reflect the behavior of the activities performed in real-life.
The framework abstracts a log based on a pattern class by extracting candi-
date pattern instances and identifying pattern instances of the pattern class. We
implemented the framework and conducted experiments by constructing a hier-
archy of abstractions based on a synthetic and a real-life log. The experiments
demonstrate the impact of noises and how one can obtain insights from the anal-
ysis based on abstracted logs. The framework is also applicable to classical event
data since a total order is also a partial order. For future work, our objectives
are two-fold. First, we aim to further support in defining the order of pattern
classes as specified by domain experts. Second, we plan to extend the extraction
to identify unexpected behavior in partially ordered event data, while explicitly
considering the causal relation of the instances.

References

1. Business process model and notation (bpmn) version 2.0. Object Management
Group (2011)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182–192 (2012)

4. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

5. Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in process mining: A taxon-
omy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business
Process Management, 7th International Conference, BPM 2009, Ulm, Germany,
September 8-10, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5701,
pp. 159–175. Springer (2009)

Event Abstraction for Partial Order Patterns 17

6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

7. Hornix, P.T.G.: Performance analysis of business processes through process mining.
Master’s Thesis, Eindhoven University of Technology (2007)

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) Business Process Management Workshops - BPM 2013
International Workshops, Beijing, China, August 26, 2013, Revised Papers. Lecture
Notes in Business Information Processing, vol. 171, pp. 66–78. Springer (2013)

9. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle informa-
tion in process discovery. In: Reichert, M., Reijers, H.A. (eds.) Business Process
Management Workshops - BPM 2015, 13th International Workshops, Innsbruck,
Austria, August 31 - September 3, 2015, Revised Papers. Lecture Notes in Business
Information Processing, vol. 256, pp. 204–217. Springer (2015)

10. Leemans, S.J.J., Goel, K., van Zelst, S.J.: Using multi-level information in hierar-
chical process mining: Balancing behavioural quality and model complexity. In: van
Dongen, B.F., Montali, M., Wynn, M.T. (eds.) 2nd International Conference on
Process Mining, ICPM 2020, Padua, Italy, October 4-9, 2020. pp. 137–144. IEEE
(2020)

11. de Leoni, M., Dündar, S.: Event-log abstraction using batch session identification
and clustering. In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC ’20:
The 35th ACM/SIGAPP Symposium on Applied Computing, online event, [Brno,
Czech Republic], March 30 - April 3, 2020. pp. 36–44. ACM (2020)

12. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process
models through automated planning. Expert Syst. Appl. 82, 162–183 (2017)

13. Lu, X., Gal, A., Reijers, H.A.: Discovering hierarchical processes using flexible
activity trees for event abstraction. In: van Dongen, B.F., Montali, M., Wynn,
M.T. (eds.) 2nd International Conference on Process Mining, ICPM 2020, Padua,
Italy, October 4-9, 2020. pp. 145–152. IEEE (2020)

14. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.:
Guided process discovery - A pattern-based approach. Inf. Syst. 76, 1–18 (2018)

15. Nguyen, H., Dumas, M., ter Hofstede, A.H.M., Rosa, M.L., Maggi, F.M.: Stage-
based discovery of business process models from event logs. Inf. Syst. 84, 214–237
(2019)

16. Nguyen, L.B.Q., Zelinka, I., Snásel, V., Nguyen, L.T.T., Vo, B.: Subgraph mining
in a large graph: A review. WIREs Data Mining Knowl. Discov. 12(4) (2022)

17. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

18. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction
for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S.,
Bhatia, R. (eds.) Proceedings of SAI Intelligent Systems Conference (IntelliSys)
2016 - Volume 1, London, UK, 21-22 September 2016. Lecture Notes in Networks
and Systems, vol. 15, pp. 251–269. Springer (2016)

19. van Dongen, B.F.: BPI challenge 2012 (2012), https://data.4tu.nl/articles/
dataset/BPI_Challenge_2012/12689204

20. Yasmin, F.A., Bukhsh, F.A., de Alencar Silva, P.: Process enhancement in process
mining: A literature review. In: Ceravolo, P., López, M.T.G., van Keulen, M. (eds.)
Proceedings of the 8th International Symposium on Data-driven Process Discov-
ery and Analysis (SIMPDA 2018), Seville, Spain, December 13-14, 2018. CEUR
Workshop Proceedings, vol. 2270, pp. 65–72. CEUR-WS.org (2018)

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204

	Event Abstraction for Partial Order Patterns

