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Abstract. Numerous processes require dedicated scheduling of their to-
be-executed activities. Various algorithms have been developed to com-
putationally solve many different scheduling problems, allocating the
available resources to predefined time slots of activity execution to (the-
oretically) maximize resource utilization efficiency. Yet, in industry, cre-
ating schedules for future process executions often remains a (primarily)
manual, spreadsheet-based endeavor. Typically, manually created sched-
ules are sub-optimal and potentially infeasible. At the same time, the
event data stored in the information systems supporting the process can
act as valuable input to further improve the general alignment of the
schedule to the actual process execution. Therefore, in this paper, we
propose a novel method that enables schedule feasibility checking based
on historically recorded event data corresponding to the actual execution
of the scheduled process. Our method serves as an input to detect sig-
nificant issues in the project scheduling problems, which can be used to
further improve the overall quality of the schedules computed. Our initial
results confirm the general applicability of the proposed framework.

Keywords: Business Process Management - Process Mining - Data-
driven Scheduling - Business Process Organization

1 Introduction

The efficient execution of business processes includes decision-making from vari-
ous perspectives to achieve the desired business outcomes. One such perspective
is scheduling [20], i.e., a sub-field of the broader field of Operations Research
(OR) [24123], concerned with the assignment of to-be-executed activities to avail-
able resources at a predefined designated time-slot. It is generally recognized that
accurate scheduling is vital in many areas, e.g., in production and service indus-
tries, to ensure a competitive advantage. Hence, several scheduling algorithms
exist that allow for computationally solving many different scheduling problems,
i.e., either yielding an optimal solution (defined in terms of some desirable out-
come of the schedule, e.g., overall lead time) or an approximate solution.
Albeit numerous classes of scheduling problems and their associated solu-
tion approaches have been investigated in tremendous depth, creating schedules
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in the industry remains a largely manual, spreadsheet-based endeavor. In [6],
two main causes are presented for the lack of adoption: (i) Advanced Plan-
ning Systems (APS) are considered a black box, and (ii) financial gains of APS
adoption are unclear. However, the advantages of APS adoption are numerous,
e.g., reduced manual labor in planning, varying optimization criteria, reduced
errors, etc. At the same time, the information systems supporting scheduled
processes, e.g., Enterprise Resource Planning (ERP) and Manufacturing Execu-
tion Systems (MES), track the historical process execution in great detail. These
recorded data, i.e., referred to as event data, provide a valuable source of, ar-
guably, objective evidence of the actual execution performance of the company.
Said event data can, in turn, be used to detect problems in a schedule (created
either manually or by an APS) and recommend alternative resource allocations.

Scheduling and the structured (semi-automated) analysis of event data (i.e.,
process mining [I]) have both been intensively studied. Yet, work focusing on
their intersection remains scarce. Some work focuses on resource allocation [24]
or combining event data with queueing theory [22]5]. However, none of these tech-
niques allow for improving operational schedules based on historical behavior.
Yet, at the same time, it is clear that historical event data is a precious resource
in increasing the overall quality of the application of scheduling in practice.
Therefore, this paper presents a novel approach for assessing scheduling feasi-
bility based on event data. Our approach learns a statistical characterization
of the past performance of resources, which it subsequently uses to detect po-
tential infeasibilities in the given schedule. To the best of our knowledge, our
work is the first to seek to connect the operational history of a process with an
organization’s scheduling function.

We present an initial evaluation of our approach using real event data com-
bined with artificially generated corresponding schedules. We assess the parame-
ter sensitivity of two instantiations of our framework and show that our approach
is computationally feasible. Furthermore, we investigate typical distributions
that tend to fit concerning the training event data.

The remainder of this paper is structured as follows. In we present
related work. In we present key background concepts.
presents our newly developed framework. In[Section 5 we evaluate our approach.
[Section €] concludes this work.

2 Related Work

Ample work exists on scheduling, i.e., covering scheduling theory, algorithms,
models, systems, etc. [20/I3]. Most work in scheduling research is algorithm
oriented and focuses on static scheduling problems. A smaller subset focuses on
the notion of dynamic scheduling [18], i.e., an ongoing reactive scheduling process
in which real-time events and information forces schedule reconsideration.

A limited amount of work has considered the intersection of process-generated
event data and scheduling. In [I6], a revised WfMS implementation is presented
that supports both flow and schedule tasks, which allows integration of em-
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ployee calendars within the task-scheduling. In [I7, Section 11.3], process min-
ing algorithms are used to identify future task scheduling, based on event logs
containing (historical) appointment information. In [I5], the authors propose
event-log-based visualization techniques to visualize changes in the process ex-
ecution, primarily focusing on the resource and time dimension. Whereas the
framework is generic, the proposed instantiation heavily focuses on the resource
and temporal dimension, allowing the analysis of the impact of alternative work
schedules. In [8], a scheduling approach is proposed for workforce scheduling.
The authors do not exploit recorded event data, yet, illustrate how the inputs of
the proposed scheduling problem relate to the BPM discipline,, e.g., covering the
organizational perspective, the control-flow perspective, etc. In [21], the authors
propose to learn static scheduling models from event data. The approach learns a
timed Petri net from the event data which is converted into a constraint program-
ming problem. In [12], the authors propose to embed process mining techniques
in the context of scheduling. However, the integration of process mining is on
the output side, i.e., the solutions of an optimization problem are converted into
synthetic event data which are used for the analysis of the proposed solution.
Another line of work aims to transform event data into Gantt charts (rather
than process models) for further analysis [3].

Some authors have considered using queueing models to explicitly model
timing-related aspects of business processes. In [22], Senderovich et al. propose
to convert an event log and a schedule of a process into a Fork/Join Queuing
Network, which are subsequently compared to assess conformance and perfor-
mance aspects of the schedule. In [5], the authors propose to estimate missing
lifecycle data for the purpose of performance analysis based on queueing models.

Several authors have focused on exploiting event data in the context of (hu-
man) resource allocation, i.e., in the context of business process executions. For
example, in [2], Arias et al. propose a framework that exploits contextual infor-
mation together with event data to improve human resource allocation. In [4],
the authors propose to learn, i.e., based on event data, which resource allocations
may lead to execution problems and propose a resource selection mechanism that
minimizes the risk of execution problems when executing future tasks. In [I1],
Thde et al. focus on a software design for a resource-aware task allocation service
that can replace existing task schedulers in BPM systems. Havur et al. [9J10]
propose a resource allocation mechanism based on answer set programming that
is able to handle resource dependencies and conflicts.

Whereas the works mentioned consider event data and schedules/resource
allocation, to the best of our knowledge, our work is the first to seek to connect
the operational history of a process with an organization’s scheduling function.

3 Preliminaries

In this section, we present the basic background concepts used in this paper.

In we briefly present the notation used. In we formally
define the notion of schedules. Finally, in we present event data.



4 H. Hafke et al.

3.1 Notation

Z denotes the set of integers and N denotes the set of natural numbers including
0. We let R denote the set of real-valued numbers and we let RT={zeR|x>0}
denote the non-negative real-valued numbers. A timestamp t€RT is a point in
timeE| An interval is a set of real-valued numbers containing all numbers that
lie between its two boundaries. Let a,beR, the closed interval between a and b
is defined as [a, lj={x€R|a<z<b}. Observe that a closed interval can be empty
(i.e., if b>a) and it can be a singleton set (i.e., if a=b), referred to as a degenerate
interval. Any interval that is non-empty and not degenerate is a proper interval.

We assume that the reader is reasonably familiar with probability theory [14].
We particularly focus on continuous probability functions, with an associated
probability density function f, e.g., the normal distribution [19] has density func-

2\ 2
tion f (x):o\/lﬂe_%(%) for average value p and standard deviation o. Vari-

ous methods exist to fit a probability distribution. Generally, given some X CR,
we let sz(X ) denote the result of applying a probability distribution fitting
algorithm 6 applied on X, where f represents the fitted distribution. Various
different methods exist to assess the goodness of fit of f w.r.t. X. We generally
let € denote the error of f with respect to X.

3.2 Schedules

In the context of this paper, we formalize the notion of a schedule. Conceptu-
ally, a schedule describes a collection of tasks that describe that some activity is
intended to be executed by a resource within a predefined time-frame. For ex-
ample, consider in which we present visual examples of two schedules of
an academic reviewing process. In the schedule in John is scheduled to
“Collect Reviews” in time window [tg, t1], and activity “Decide” in time window
[ts,ts]. Mike is scheduled to “Invite Reviewers” in time window [ts, t5]. Anne is
scheduled to “Collect Reviews” in time window [ty t3]. In the example schedule
in the same activities are scheduled to the same set of resources. How-
ever, in the schedule, there is no obsolete idle time in between any tasks, and, the
tasks are scheduled as early as possible (e.g., Anne starts inviting reviewers di-
rectly at tg, reviews are directly collected after reviewer invitation is completed,
etc.). As such, schedule is expected to finish earlier. In the context of
this paper, we define the notion of a task and corresponding as follows.

Definition 1 (Task; Schedule). Let X' denote the universe of business activi-
ties and let R denote the universe of resources. A task T is a tuple T=(a,r,t1,t2)€
IXRXRYXRY, s.t. to>t;. We let T denote the universe of tasks. A schedule is
a set of tasks, i.e., SCT. We let S denote the universe of schedules.

Observe that, for a given task 7=(a, r,t1,t2), the intended timeframe of ex-
ecution is the interval [t1,%2]. Since ty>t;, any task is assumed to be sched-
uled in a proper interval. We let A(7)=[t1,t2] denote said interval. Reconsider

! We assume the existence of some minimal timestamp toc€R' and t'€R' s.t. any
timestamp ¢ can be expressed as t=to+t’.
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tt “Collect Reviews”

1 “Decide”

B “Invite Reviewers”
Anne: S

Mike: ettt uta

John: ] ettt ettt ea e

L 1 1 1 1 1 1 1 1
to t1 ta ts ta ts te tr tg time

(a) Example of a non-optimal schedule of an academic reviewing process. John is
scheduled to “Invite Reviewers” in time window [to, t1], and activity “Decide” in time
window [tg, ts]. Mike is scheduled to “Collect Reviews” in time window [t3,¢5]. Anne
is scheduled to “Invite Reviewers” in time window [t1, ¢3].

Anne: p————

Mike: LLLLLLLLLLLLLLLLLLLL

John: B 33200 s
L 1 1 1 1 1 1 1 1
to ty ta t3 ta ts te t7 tg time

(b) Example of an optimal schedule of an academic reviewing process. John is scheduled
to “Invite Reviewers” in time window [to, 1], and activity “Decide” in time window
[ta,t6]. Mike is scheduled to “Collect Reviews” in time window [t2, t4]. Anne is sched-
uled to “Invite Reviewers” in time window [to, t2].

Fig. 1: Two example schedules. The schedule inis non-optimal, the sched-
ule in is optimal and is expected to finish earlier.

which can be written as {(“Invite Reviewers”, John, tg, t1), (“Decide”,
John, tg, tg), (“Collect Reviews”, Mike, t3, t5), (“Invite Reviewers”, Anne, to, tg)}.

Various constraints can render a schedule (in)feasible. For example, if we
only require a resource to work on one task at a time, both schedules in |Fig. 1
are feasible. However, suppose we require a minimal setup time of four time-
units (idle time in-between two consecutive activities executed by a resource).
In that case, the example schedule in is not feasible (John only has three
time-units of setup time between his two activities). Finally, a strict subset of
all feasible schedules, i.e., given a set of constraints, is optimal. Optimality of
a schedule is determined by an objective function, i.e., a function that needs
to be minimized or maximized. For example, assuming that no setup times are
required, if we aim to optimize the makespan (minimizing the end time of any
task), the schedule in is not optimal whereas is (assuming that
the schedule needs to adhere to the general control-flow of academic reviewing).
A schedule may be optimal under a particular set of constraints yet infeasible for
a slightly different set of constraints. In the context of this paper, we primarily
assume that a given schedule is feasible, yet, it may be sub-optimal.

3.3 Event Data

The information systems supporting business processes, e.g., Enterprise Resource
Planning (ERP) systems, track the execution of the different activities executed,



6 H. Hafke et al.

Table 1: Event data required for scheduling
FEvent ID|Case ID Task Start Time End Time Resource

1337 331 |Invite reviewers|01/15/2009 15:40|01/15/2009 15:59| Mike
1338 331 Get review [02/19/2009 07:30/02/19/2009 15:22| Carol
1339 332 |Invite reviewers|05/15/2009 12:10/05/15/2009 13:01| Anne

i.e., referred to as an event log. Consider in which we present a simplified
example of an event log. Each row in the table describes an activity instance, i.e.,
a historical recording of the execution of an activity. The first row represents a
recording of the “Invite reviewers” activity. The activity instance has a unique
identifier, i.e., 1337. Similarly, the activity instance has a unique case identifier,
i.e., 331, representing the process instance for which the activity was executed.
Two timestamps are recorded for the activity instance, i.e., a start and end times-
tamp. Finally, the activity instance records which resource executed the activity.
Generally, additional data attributes may be available for activity instances, e.g.,
a customer ID, product ID, or associated costs. However, for simplicity, we only
focus on the data attributes strictly required for our approachE| We formalize
the notion of event data as follows.

Definition 2 (Activity Instance, Event Log). Let X denote the universe
of activity labels and let R denote the universe of resources. An activity in-
stance, i.e., a tuple v=_i,c,a,r,t1,t2) ENXNx XX RXRT xR, describes the his-
torical recording of an activity a, executed by resource r during time-frame [ty,t2]
(t1<ta), in the context of case c. Attribute i represents the activity instance’s
unique identifier. We let T denote the universe of activity instances, i.e., for any
v, V' €T with v=_i,¢,a,r t1,tz), vV'=>",c,a', v, t),t}), if i=t" then v=0'.
An event log L is a collection of activity instances, i.e., LCT.

Let v=(i, ¢, a,r, t1,ts) be an activity instance. Similarly to tasks, we let A(v)=[t1, t2],
yet, A(v) describes the actual time interval in which the activity instance was
observed (opposed to the scheduled/expected time).

4 Event-Data-Driven Feasibility Checking

In this section, we present our main contribution, i.e., event-data-driven feasi-
bility checking of schedules. We present a general overview of our approach in
[Section 4.1l In [Section 4.2] we present a generic definition and two instantia-
tions of duration estimators, i.e., data-driven statistics to estimate the duration
of a task executed by a resource. Finally, in we describe the gen-
eral mechanism to revise a given schedule based on the learned estimators to be
subsequently used for feasibility checking.

2 Unlike most process mining works, we do not explicitly require the presence of a
case identifier. However, follows the conventional definition.
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Fig.2: Schematic overview of the proposed approach. The proposed approach
consists of two steps, i.e., 1. learning an activity-resource statistics matriz and
2. Checking schedule feasibility

4.1 Overview

In this section, we briefly present an overview of our proposed framework. Con-
sider in which we present a schematic overview. Our framework consists
of two main steps. In the first step, from the input event log, we derive a duration
estimator. We use the event data to record different statistics (e.g., averages, dis-
tributions, etc.) of the historical execution performance of an activity-resource
combination. In the second step, we perform a feasibility check of a given theoret-
ically feasible schedule. The core idea of the feasibility check is to find scheduled
tasks that, according to the data-based duration estimator, are either overly op-
timistic or overly pessimistic, i.e., in terms of their expected duration. Suppose
we detect such a task in the schedule. In that case, we use the activity-resource
statistic to compute a more reasonable expected duration, i.e., we use a statistic
based on historical A(v) values to revise A(7) values (for veZ and 7€T). We
subsequently replace the A(7) values in the given schedule with a more realis-
tic data-driven timeframe [t/,t5] and assess if the schedule remains feasible. We
generally assume that the underlying scheduling problem is known, i.e., used
to generate the schedule, or, that domain knowledge regarding general schedule
feasibility is known. For example, there may be working hours in which tasks
must be scheduled, mandatory setup times between two tasks, breaks, etc. We
additionally assume that checking the feasibility of a given schedule w.r.t. a set
of constraints is (programmatically) handled outside of our approach.

4.2 Deriving Activity-Resource Duration Estimators

In this section, we define the notion of duration estimators. We aim to compute
an estimator for the expected duration of an activity a€ X’ executed by a resource
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r€R. For example, if we assume that event 1337 in is representative
for the performance of Mike for the activity “Invite reviewers”, we assign an
estimated value of 19 minutes. We first define the general notion of duration
estimator, after which we present two corresponding instantiations.

Definition 3 (Duration Estimator). Let X denote the universe of activities
and let R denote the universe of resources. A duration estimator is a function
A: IxR—RT estimating the expected duration of task execution.

Given a task 7=(a, r, t1, t2) in some schedule S, for simplicity, we let A(T):A(a, T).
Observe that 7/=(a,r, t1,t1+A(7)) is a derived task, i.c., based on 7, starting
at the same timestamp as 7, with the estimated duration for the activity and
resource described by 7.

In the remainder, we propose two concrete instantiations for the duration
estimator, i.e., an estimator based on the empirical average and a distribution-
based duration estimator.

The empirical-average-based estimator uses the measured average duration
of a task executed by a resource. Additionally, the standard deviation is added
a number of k€N times to the measured average. We formalize the empirical-
average-based estimator as follows.

Definition 4 (Empirical Average Estimator). Let LCT be an event log

and let k€Z. The empirical average duration estimator Agyg s : IXxR—=RT isa
duration estimation function with:

Aaw’k(a,r)zf—kk-af (1)

Sz

where X={A(v)[vELAv=(i,c,a,7,t1,t2)}, T="F7, and o5= Zaex(@T)

[X]-1

The empirical-average-based estimator ignores the underlying distribution of
the duration of the activity executed by the resource. Furthermore, parameter
k allows us to tune the degree of under or overestimation of the estimator w.r.t.
the data, i.e., a negative value for k yields a low estimated value, a positive value
yields a high value.

Additionally, we propose a distribution-based estimator. In the estimator, we
fit a number of different probability distributions and select the best fitting value.
Subsequently, we use the k-th percentile of the fitted probability distribution as
an estimator.

Definition 5 (Distribution Estimator). Let LCT be an event log and let

ke[0,1]. The distribution-based duration estimator A YXR—RT is a

' e IS ' : dist, f k°
duration estimation function with:

b

Agin (@ m)=b, s.t. / f(x)dz=k (2)

where X={A(v)jveLAv=(i,c,a,r,t1,t2)} and f=0(X) is some fitted continu-
ous probability function.
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Observe that, for k=0.1, we obtain the 10-th percentile of the cumulative dis-
tribution of f as an estimator. In practice, when computing f:G(X ), we fit a
number of different distributions based on X, e.g., the log-normal distribution,
the Gamma distribution, etc. We pick the fitted distribution that minimizes the
corresponding error e, e.g., by using the residual sum of squares.

Observe that assumes that every repeated execution of a task
by the same resource, i.e., for the same case, has the same duration. In practice,
this needs not to be the case, i.e., the 2nd execution of the same activity by
the same resource may be generally significantly faster or slower. Clearly, the
signature of the domain of the A-function can be extended to cover more contex-
tual attributes than just activity and resource, e.g., other available attributes.
However, notably, it is likely that the most effective context to use depends on
both the process under study as well as the corresponding event data.

4.3 Feasibility Checking

As a second step of our proposed framework, we assess the feasibility of the
schedule. The feasibility check consists of two major steps, i.e., task duration re-
placement and constraint-compliance checking. The latter step depends primarily
on either the constraints used to generate the schedule (in case scheduling is ap-
plied) or on domain knowledge regarding general scheduling feasibility, e.g., task
may only be executed during work hours. However, the former step, i.e., task du-
ration replacement, can be performed either in a conservative or in a progressive
manner.

Given some schedule S€S8 and 7=(a, r, t1,t2). In the conservative replacement
strategy, we only replace task durations that are overly optimistic in the given
schedule, i.e., if A(1)<A(a,r) we replace 7 in S by 7/=(a,r,t1,t1+A(a,r)).
However, if A(7)>A(a,r), we keep 7 in the schedule, i.e., as it is assumed to
take longer than the estimator and thus, is not expected to lead to problems.
Reconsider and assume that we predict Anne to require 4 time units for
“Invite Reviewers”, Mike to require 3 time units for “Collect Reviews”, and John
only 1 time unit for the “Decide” activity. depicts the revised schedule,
using the conservative strategy. Observe that the schedule inviting reviewers is
expected to overlap with the review collection. Similarly, the decision activity is
expected to partially overlap with the review collection.

In the progressive replacement strategy, we replace 7 in S by 7'=(a,r,t1,t1+
A(a,r)) if A(T)#A(a, r). Hence, in the progressive strategy, we allow tasks to
be shortened in the expected duration as well. Observe that the consequences
of shortening tasks in the schedule are more profound. Reconsider the previous
example and consider illustrating the corresponding result of applying
the progressive strategy. The “Decide” task of John is expected to only take one
time-unit. However, as the original schedule reserved the time-frame [t4, tg], the
activity can be positioned to be starting anywhere in the time-frame [t4, t5].
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tt “Collect Reviews”

1 “Decide”

B “Invite Reviewers”
Anne: e ——

Mike: Crttttttttttttos —
John: NN NN
L 1 1 1 1 1 1 1 1
to t1 to ts ta ts te t7 tg time

(a) Example of conservative task duration replacement. The tasks of Anne and Mike are
expected to take longer (extended time-frame highlighted in black). John is expected
to take only one time-unit for the “Decide” activity. However, the conservative strategy
does not alter the scheduled “Decide” task for John.
Anne: p—————
Mike: R |
John (1): posssss =000 s

John (2): pssss =000 i
L 1 1 1 1 1 1 1 1
to t1 2] t3 ta ts te tr ts time

(b) Example of progressive task duration replacement. The progressive strategy shortens
the scheduled “Decide” task for John. We are able to schedule the start of the “Decide”
activity for John in-between t4 and t5. The earliest and latest scheduling of the decide
activity are both visualized (John (1) and John (2)) respectively.

Fig. 3: Different examples of task duration replacement of the schedule depicted

in[Fig. 1b| i.e., covering both the conservative (Fig. 3al) and progressive strategy
(Fig. 30).

5 Evaluation

In this section, we evaluate our proposed event-data-driven schedule feasibility
check. We present the experimental setup in [Section 5.1} [Section 5.2| presents
the results.

5.1 Experimental Setup

In this section, we present the general experimental setup of our evaluation. We
present the research questions considered, discuss the event data used and the
general setup of the experiments, including the preprocessing steps conducted
to prepare the event data for our experiments

Research Questions The primary focus of our evaluation is an assessment of
the computational aspects. In the context of our evaluation, we aim to answer
the following research questions:

1. Is there a (significant) difference in the parameter sensitivity of the proposed
estimators?

3 The source code of our experiments is publicly available at https:/ /github.com/
HannesHf/Feasibility CheckingofProcessSchedules.
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Table 2: Descriptive statistics of the BPIC17 event log, used in the experiments.

FEvents 1,202,267

FEvents with Start 128,227

Events with Complete 475,306

Resulting Tasks 44,503

Total Timeframe Jan. 2016 - Jan. 2017
Training Window Jan. 2016 - Apr. 2016
Test Data (Schedule Proxies)May 2016 - Oct. 2016

|
|
o |
Retain A(.tw‘n‘,y Select Training I . Select Test Data Check Schedule | |
Instances with Train Estimator s
. Data (Schedule Prozy) Feasibility
Start Duration | | End

Fig. 4: Schematic control-flow view of the steps conducted in the experiments.

2. Is there a (significant) difference in the computational complexity of the
proposed estimators?

3. Which distributions are most often fitted when using the distribution-based
estimator?

Event Data Selection In our experiments, we use real event data. A pri-
mary requirement of the event data is the availability of both start and end
timestamps as well as resource information. However, most publicly available
event data (https://data.4tu.nl/) only records one timestamp per event. In
the BPI Challenge 2017 log (BPIC17) [7] (https://data.4tu.nl/articles/dataset/
BPI_Challenge_2017/12696884)), a subset of the recorded events describe both
a start and end timestamp (respectively 128,227 start and 475,306 end times-
tamps, out of a total of 1,202,267 events). Additionally, the event data is map-
ping of a task to a specific resource, where the set resource is to some extent
constant. The event log pertains to a loan application process of a Dutch finan-
cial institute, and as such several tasks performed by human resources differ in
duration. We match the events describing a start and complete timestamp to
create tasks. Note that only a small subset of the events can be matched because
either the started task is aborted, i.e., there exists no corresponding complete
timestamp, or the events are atomic events, i.e., there is no corresponding start
timestamp. Consider in which we present general descriptive statistics
of the BPIC17 event log in the context of our experiments.

Setup depicts the control flow of the experimental setup. In the first
step, we retain all activity instances with a non-zero duration. The final number
of extracted tasks for our experiments is 44, 503. We use the event data both as
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a training set, i.e., to compute the task estimator, as well as to present schedules
(i.e., schedule prozxies). To create a training data set we use the tasks occurring in
the time period Jan. 2016 - Apr. 2016, yielding 13,131 tasks. We use the events
recorded in the time period May 2016 - Oct. 2016 as proxy schedules. The sizes
of the derived schedules are (# tasks): 05/16: 3,383; 06/16: 4,408; 07/16: 4,289;
08/16: 3,648; 09/16: 4115; 10/16: 3,715 We use all activity instances between
Jan. 1st, 2016, and Apr. 30th, 2016, as a training window (cf. . For every
experiment, we repeat the subsequent three steps, i.e., training the estimator,
selecting the test data, and finally checking the schedule feasibility.

We consider the empirical average estimator (Aayg x), with ke{—2,—1.5,.. .,

1.5,2}. For the distribution based estimator (AAdistf,k(a,r)), we perform dis-
tribution fitting on the normal, exponential, beta and gamma distributions and
use k€{0.01,0.05,0.1,0.2,0.3,...,0.8,0.9,0.95,0.99} for feasibility checking. As
no schedules are available for BPIC17, we select a subset of the event log to
represent a schedule, i.e., as test data (which we refer to as a proxy schedule). In
terms of task replacement, we only apply the conservative replacement strategy.

5.2 Results

In this section, we discuss the results of our experiments. We first consider pa-
rameter sensitivity, after which we focus on computational complexity. Finally,
we briefly investigate the most frequently occurring distribution for the task-
duration estimator.

Parameter Sensitivity In this section, we compare the parameter sensitiv-
ity of the average-based estimator against the distribution-based estimator. In
particular, we investigate the sensitivity of both approaches in terms of their
conflict-detection ratio for different parameterizations of the algorithm. Gen-
erally, we compute a revised schedule, for which we measure the ratio of the
number of tasks that overlap with another task to be executed by the same re-
sourceE| Let z denote the number of tasks that have such an issue; the ratio ¢
we compute is q:‘s—z,l. Hence, if ¢=0, no problems have been detected. If ¢=1,
all tasks have a problem.

Consider in which we depict the results for both estimators. Observe
that, in the figures, the previously described ¢ values are listed as percentages,
and, similarly, for the distribution-based estimator (Fig. 5b]), the k-values are rep-
resented as percentages. The empirical-average-based estimator (Fig. 5af) shows a
much stronger parameter sensitivity compared to the distribution-based estima-
tor . This makes sense as, for example, for a normal distribution, a value
of k close to 0 or 1 for the distribution-based approach describes the results at
T+ /—207 for the empirical-average-based approach. In that regard, even though
different underlying distributions are used for activity-resource combinations, us-
ing k€{0.2...0.8} for the distribution-based estimator broadly covers T+/—oz

4 Observe that, since we use real event data, we are not aware of the actual constraints
of the process.
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Fig.5: Results for parameters sensitivity of the two proposed estimators, i.e.,
empirical average (Fig. 5a)) and distribution-based (Fig. 5b))

for the empirical-average-based. Generally, the distribution-based approach is
less sensitive to parameter changes, except for the extremes of parameter k.

Interestingly, in both cases, the highly “optimistic” values of the parameters
(i.e.,, =2 for and close to 0 for still yield a detection value
of ¢=0.2. Upon inspection of the results, we observed that this is because some
activity-resource pairs infrequently occur in the training data, even yielding large
estimated values for optimistic parameter settings. In other cases, some tasks still
overlap, i.e., even though the estimated duration is very low. In such cases, either
the tasks were already overlapping in time in the real execution (i.e., used as a
proxy), or the low duration is still an overestimate of the actual duration at that
point in time.

Computational Complexity Here, we focus on the computational complexity
of the estimators. Clearly, computing the average and standard deviation of a set
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Fig. 6: Runtime of distribution fitting and computation of percentiles per size of
event log combined with a linear trend-line (R?=0.895132). The experimental
results show a linear trend in terms of the number of activity instances present
in the training data.

Table 3: Distribution fitting results.

Distribution| Absolute|Relative
Beta|99 54.4%
Gammal|60 33%
Exponential |22 12.1%
Normal|l 0.5%

of numbers is a linear operation in terms of its input. Even for extremely large
numbers, such statistic can be computed on commodity hardware, as such, we
refrain from presenting run-time measurements. Similarly, schedule revision has
a theoretical run-time of O(]S|). Measuring the number of errors has a theoretical
run-time of O(|S|?). As we expect schedules to be of reasonable size, we do not
further investigate the runtime of said check.

Distribution fitting may have a wider range of theoretical runtime complexity
and is, as such, more interesting to study, i.e., particularly as we perform multiple
tests. In we present the run-time of the training time of the distribution-
based estimator. To generate training data of increasing sizes, we randomly
sampled relevant activity instances from the BPIC17 data (cf.[Table 2). We apply
distribution fitting on top of the collection of recorded instances. We observe that
the results show a linear trend regarding the number of instances.

Frequently Occurring Distributions Here, we focus on the most often oc-
curring distributions, i.e., when using the distribution-based estimator. Consider
in which we depict the number of times a given distribution was deemed the
best fit for an activity-resource combination. Due to its relatively flexible nature,
the beta distribution is most often used, i.e., in approximately 54, 4%. In roughly
33%, the gamma distribution yields the best fit, and in 12.1%, the exponential
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distribution. Logically, the normal distribution rarely fits well, i.e., only in one
case it returned the best fit. However, in some instances, limited training data
may be available for the distribution fitting.

6 Conclusion

The application of scheduling often overlooks the availability of event data and
does not recognize the vast potential such data can offer for an increased over-
all quality of generated schedules. At the same time, process-oriented research
fields exploiting event data, i.e., process mining, tend to ignore the existence and
importance of scheduling the to-be-executed process activities. In this paper, we
proposed a novel event-data-driven schedule feasibility-checking framework to
bridge the abovementioned gap. Our framework proposes to learn duration esti-
mators based on event data, which are subsequently used to revise the duration
of task allocations in a given schedule. Our initial results confirm the general
applicability of our proposed framework and show that the proposed framework
instantiations are computationally feasible.

As future work, we plan to conduct several case studies, enabling the use of
more realistic schedules and corresponding event data. Secondly, we also aim to
allow the replacement of scheduled tasks by shorter expected activity duration.
We additionally aim to work with buffers, i.e., portions of idle time in which the
scheduled activities are allowed to exceed their initially scheduled time.
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