
Tuning Alignment Computation: An
Experimental Evaluation

Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.j.v.zelst, a.bolt, b.f.v.dongen}@tue.nl

Abstract. Conformance checking aims at assessing whether a process
model and event data, recorded in an event log, conform to each other. In
recent years, alignments have proven extremely useful for calculating con-
formance statistics. Computing optimal alignments is equivalent to solv-
ing a shortest path problem on the state space of the synchronous prod-
uct net of a given Petri net and event data. State-of-the-art alignment-
based conformance checking implementations exploit the A∗-algorithm,
a heuristic search method for shortest path problems, and include a wide
range of parameters that likely influence their performance. In this pa-
per, we present an exploratory empirical evaluation of parametrization
of the A∗-algorithm used in alignment computation. Our initial results
show that the performance of alignment computation greatly depends
on adequate parametrization of the underlying search algorithm.

Keywords: Process Mining, Conformance Checking, Alignments

1 Introduction

Process mining [2] is concerned with the analysis and improvement of business
processes, based on real process execution data stored in event logs. The field
consists of three main branches: process discovery, conformance checking and
process enhancement, where conformance checking, i.e. this paper’s focus, aims
at assessing to what degree the behaviour described by a process model is in line
with behaviour captured in an event log.

Early work in conformance checking focused on replaying behaviour in an
event log within a Petri net by “playing the token-game” [12]. These techniques
however often yield ambiguous and/or unpredictable results. Recently, align-
ments were introduced [3,5], which rapidly developed into the de-facto standard
in conformance checking. When computing alignments, we convert a given pro-
cess model, together with the behaviour in an event log, into a synchronous
product net and subsequently solve a shortest path problem on the correspond-
ing state space. The major advantage of this approach is the fact that deviations
and/or mismatches are quantified in an exact, unambiguous manner.

6

The process mining tool-kit ProM [15] has proven valuable for the implemen-
tation and evaluation of several process mining techniques, for both research and
industry. Alignments are implemented in ProM, and, the current implementation
can be considered state-of the-art. The implementation uses A∗ [7] as an under-
lying solution to the shortest path problem and provides several parametrization
options. Examples of such parameters, which we assess in this paper, are the type
of heuristic used and the second order sorting criteria of the underlying priority
queue. Studies towards the effect of these parameters, in context of alignment
computation, are however missing.

In this paper we formalize the A∗-algorithm and associated parametriza-
tion in terms of alignment computation, in line with the underlying imple-
mentation in ProM. As such, this paper acts as a high-level description of
the current implementation. Using the ProM-based extension of RapidMiner
(http://rapidminer.org), i.e. RapidProM [4] (http://rapidprom.org), we
study the impact of the parametrization of the A∗-search algorithm on the av-
erage computation time and memory usage. Our experiments show that for the
class of models tested, i.e. Petri nets without loops and invisible transitions, there
is a clear trade-off in terms of computation time and memory usage when using
different heuristic functions. Additionally, the second-order sorting criterion of
the priority queue used internally greatly impacts performance.

The remainder of this paper is organized as follows. In Section 2, we present
preliminaries. In Section 3, we discuss related work. In Section 4, we explain how
to find optimal alignments using A∗. In Section 5, we discuss parametrization of
A∗ algorithm. In Section 6, we evaluate the proposed parametrization. Section 7
concludes the paper.

2 Preliminaries

In this section we present preliminary concepts needed for a basic understanding
of the paper. We assume the reader to be reasonably familiar with concepts such
as partial functions, sets, bags, sequences and Petri nets.

For each countable set X we assume the existence of set IX = {1, 2, ..., |X|}
and bijective function ι : IX → X, i.e. each set is indexed. We write x ∈ X
to denote any arbitrary element in X and we let xi ∈ X denote that specific
element x ∈ X for which ι(i) = x with i ∈ IX . We denote the set of all possible
multisets over set X as B(X). We denote the set of all possible sequences over
set X as X∗. The empty sequence is denoted 〈〉. Concatenation of sequences σ1
and σ2 is denoted as σ1 ·σ2. Given tuple x = (x1, x2, ..., xn) of Cartesian product
X1×X2×...×Xn, we define πj(x) = xj for all j ∈ {1, 2, ..., n}. We overload nota-
tion and extend projection to sequences. Given sequence σ ∈ (X1×X2×...×Xn)∗

of length k with σ = 〈(x11 , x21 , ..., xn1

), (x1
2

, x2
2

, ..., xn
2

), ..., (x1
k

, x2
k

, ..., xn
k

)〉,
we have πj(σ) = 〈xj1 , xj2 , ..., xjk〉 ∈ Xj∗, for all j ∈ {1, 2, ..., n}. Given a
sequence σ = 〈x1, x2, ..., xk〉 ∈ X∗ and a function f : X → Y , we define
πf (σ) = 〈f(x1), f(x2), ..., f(xk)〉. Given Y ⊆ X we define ↓Y : X∗ → Y ∗ re-
cursively with ↓Y (〈〉) = 〈〉 and ↓Y (〈x〉 · σ) = 〈x〉· ↓Y (σ) if x ∈ Y and

7

pi t1

a

register

request

p1

p2

t3

c

examine

causally

t2

b

examine

thoroughly

t4

d

check ticket

p3

p4

t5

e

decide p5

t6

f

re-initiate

t7

g

pay

compensation

t8

h

reject request

po

Fig. 1. Example labelled Petri net N1

↓Y (〈x〉 · σ) =↓Y (σ) if x /∈ Y . We write σ↓Y for ↓Y (σ). We let ε ∈ R>0 denote
a positive infinitesimal with ε > 0, nε > mε if n > m and lim

n→∞
(nε) < 1.

An introduction to event logs is outside of the scope of this paper, hence, we
refer to [2]. We define an event log as a multiset of sequences of business process
activities. Let A denote the universe of business process activities, an event log
L is defined as L ∈ B(A∗). A sequence σ ∈ L is called a trace.

For a general introduction of Petri nets we refer to [11]. For the purpose of
this paper we use the notion of labelled Petri nets.

Definition 1 (Petri net). Let P denote a set of places, let T denote a set of
transitions and let F ⊆ (P ×T)∪ (T ×P) denote the flow relation. Let L denote
the universe of labels and let λ : T → L denote a labelling function. A labelled
Petri net is a quadruple N = (P, T, F, λ). N denotes the universe of Petri nets.

Marking M of Petri net N = (P, T, F, λ) is a multiset of P , i.e. M ∈ B(P).
The initial marking of N is denoted as Mi. An example of a labelled Petri net
(with both full/abbreviated transition labels) is depicted in Figure 1. When a
transition is enabled, we write (N,M)[t〉, e.g. (N1, [pi])[t1〉 and (N1, [p3, p4])[t5〉.
If firing a sequence of transitions σ ∈ T ∗, starting in marking M , yields marking
M ′, we write (N,M)

σ−→ (N,M ′).
Alignments allow us to compare the behaviour recorded in event logs to the

behaviour described by a Petri net. Conceptually, an alignment represents a
mapping between the activities observed in a trace σ ∈ L and the execution of
transitions in the Petri net.

Definition 2 (Alignment). Let σ ∈ A∗. Let N = (P, T, F, λ) be a labelled
Petri net and let Mi,Mf ∈ B(P) denote N ′s initial and final marking. Let
�/∈ A ∪ T . A sequence γ ∈ ((A ∪ {�})× (T ∪ {�}))∗ is an alignment if:

1. (π1(γ))↓A = σ; activity part (excluding �’s) equals σ.

2. (N,Mi)
(π2(γ))↓T−−−−−−→ (N,Mf); transition part (excluding �’s) in Petri net

language.

8

γ1 :
a b d e h
t1 t2 t4 t5 t8

γ2 :
a b d e � h
t1 t2 t4 � t5 t8

γ3 :
a b d e � � � � h
t1 t2 t4 t5 t6 t4 t2 t5 t8

Fig. 2. Example alignments for 〈a, b, d, e, h〉 and N1.

3. ∀(a, t) ∈ γ(a 6=� ∨t 6=�); (�,�) is not valid in an alignment.

We let Γ (N, σ,Mi,Mf) denote the universe of alignments of Petri net N and
trace σ given markings Mi and Mf .

Given an alignment, an individual element of a sequence is referred to as a
move. If a move is of the form (a,�) we refer to it as a log move, which indicates
that we are not able to map an observed activity to the execution of a transition.
A move of the from (t,�) represents a model move and indicates that, according
to the model, an activity was required to be executed, yet it didn’t occur. Finally,
a move of the form (a, t) represents a synchronous move, given a = λ(t). Consider
example trace 〈a, b, d, e, h〉 and consider Petri net N1 in Figure 1. Observe that
the three sequences γ1, γ2 and γ3, presented in Figure 2, are all alignments. All
three alignments are in Γ (N1, 〈a, b, d, e, h〉, [pi], [po]). Observe that γ1 minimizes
any moves of the form (�, t) and (a,�), hence, we prefer γ1 over γ2 and γ3. To
be able to rank and compare alignments we define a cost-function over moves.
The cost of the alignment itself is the sum of the costs of its moves.

Definition 3 (Alignment Cost). Let σ ∈ A∗, let N = (P, T, F, λ) be a labelled
Petri net with Mi,Mf ∈ B(P), let �/∈ A∪ T and let cm : (A∪ {�})× (T ∪ {�
})→ R>0. Given alignment γ ∈ Γ (N, σ,Mi,Mf), the costs κcm of γ, given move

cost function cm, is defined as κcm(γ) =
∑|γ|
i=1 cm(γ(i)).

In general one can opt to use an arbitrary instantiation of cm, however, in
the remainder of the paper we adopt the unit-cost function:

1. cm(a, t) = ε⇔ a ∈ A, t ∈ T and λ(t) = a
2. cm(a, t) =∞⇔ a ∈ A, t ∈ T and λ(t) 6= a
3. cm(a, t) = 1 otherwise

The unit function only assigns finite values to model-, log- and synchronous
moves. Moves (a, t) of the form a 6=� ∧t 6=� ∧λ(t) 6= a have value ∞. As we
assume unit-costs, we omit cm as superscript and simply refer to κ(γ). We write
γopt to refer to the optimal alignment, i.e. γopt = arg minγ∈Γ (N,σ,Mi,Mf)

κ(γ).

3 Related Work

We primarily focus on work in conformance checking, for an overview of process
mining we refer to [2].

Early work in conformance checking uses token-based replay [12]. The tech-
niques try to replay a given trace in a model and add missing tokens if a transition

9

is not able to fire. After replaying the full trace, remaining tokens are counted
and a conformance statistic is computed based on missing and remaining tokens.

Alignments are introduced in [5]. The work proposes to transform a given
Petri net and a trace from an event log into a synchronous product net, and,
subsequently solve the shortest path problem on the corresponding state space.
Its implementation in ProM may be regarded as the state-of-the-art technique
in alignment computation and serves as a basis for this paper.

In [1,10] decomposition techniques are proposed together with computing
alignments. The input model is split into smaller, transition-bordered, sub-
models for which local alignments are computed. Using decomposition techniques
greatly enhances computation time. The downside of the techniques is the fact
that they are capable to decide whether a trace fits the model or not, rather
than quantifying to what degree a trace fits.

Recently approximation schemes for alignments, i.e. computation of near-
optimal alignments, have been proposed in [14]. The techniques use a recursive
partitioning scheme, based on the input traces, and solve multiple Integer Lin-
ear Programming problems. The techniques identify deviations between sets of
transitions, rather than deviations between singletons (which is the case in [5]).

4 Computing Optimal Alignments

Given a Petri net N with initial marking Mi and final marking Mf , and a
trace σ we aim at finding γopt = arg minγ∈Γ (N,σ,Mi,Mf)

κ(γ). Computing the
optimal alignment is equivalent to solving a shortest path problem based on the
synchronous product net of N and σ. A formal definition of such synchronous
product net and an equivalence proof of the two problems is outside the scope
of this paper. Hence, we refer to [5] for these definitions and proofs. We clarify
the use of a synchronous product net by means of an example.

Consider Figure 3 which depicts the synchronous product net of Petri net
N1 and trace 〈a, b, d, e, g〉. The trace is transformed into a sequential Petri net
fragment, depicted in the upper part of Figure 3 (coloured dark grey). Each
dark grey transition represents a log move, as reflected by their corresponding
label. The lower part of Figure 3 (coloured white) is based on the original model.
Each white transition represents a model move. Finally, the middle transitions
(coloured light grey) represent synchronous moves and connect each trace-based
transition to each equal-labelled transition in the model part. A firing sequence
of the synchronous product net from [pi, p

′
i] to [po, p

′
o] corresponds to a sequence

of moves, which in fact is an alignment [5].
Each transition in the synchronous product net corresponds to a move in an

alignment, and moreover, to an arc in the state space of the synchronous product.
Since each move has an associated cost, we are able to assign the weight of each
arc in the state space with the cost of the associated move. The goal of finding an
optimal alignment is thus equivalent to solving a shortest path problem on the
state space of the synchronous product net, using [pi, p

′
i] as an initial state and

[po, p
′
o] as a final state. In the remainder of this paper we assume the existence

10

p′i t′1

(a,�)

p′1 t′2

(b,�)

p′2 t′3

(d,�)

p′3 t′4

(e,�)

p′4 t′5

(g,�)

p′o

t1,1′ (a, t1)

t3,2′

(b, t2)

t4,3′

(d, t4)

t5,4′

(e, t5)

t7,5′

(g, t7)

t1

(�, a)

pi

p1

p2

t2

(�, b)

t3

(�, c)

t4

(�, d)

p3

p4

t5

(�, e)
p5

t6

(�, f)

t7

(�, g)

t8

(�, h)

po

Fig. 3. Synchronous product net of trace 〈a, b, d, e, g〉 and example Petri net N1.

of a synchronous product oracle ⊗ : N × A∗ → N that, given a Petri net and
a trace, computes a synchronous product. We write N ⊗ σ instead of ⊗(N, σ).
Furthermore we define NS = {NS | ∃N ∈ N , σ ∈ A∗(NS = N ⊗ σ)}. Since
the synchronous product inherits the initial marking of the given Petri net and
just adds one marked place, i.e. p′i in Figure 3, we use p′i to refer to that place.
Similarly, we refer to p′o.

Many algorithms exist that solve a shortest path algorithm on a weighted
graph with a unique start vertex and a set of end vertices. In this paper we
predominantly focus on the A∗ algorithm [7]. The core of the A∗ algorithm is
the usage of a heuristic function that approximates, for each vertex in the given
graph, the expected remaining distance to the closest end vertex. The A∗ al-
gorithm is admissible, i.e. it guarantees to find a shortest path, if the heuristic
always underestimates the actual distance. To formally define a heuristic func-
tion, we first define P as the universe of Petri net places. A heuristic function
is a function h : NS × B(P) × B(P) → R>0, where h(NS ,M,M ′) denotes the
estimated distance to go from M to M ′ in the state space of NS . We assume
any heuristic function to underestimate the true distance from M to M ′. In
case we have M(p) > 0 or M ′(p′) > 0, and p or p′ is not part of NS , then
h(NS ,M,M ′) =∞, i.e. the heuristic is only defined on the state space of NS .

In Algorithm 1 we present an algorithmic skeleton for optimal alignment
computation using A∗. The algorithm expects a Petri net N with associated
initial and final marking Mi, Mf , and a trace σ as an input. Moreover it expects
a heuristic function h. The algorithm first creates the synchronous product net
NS . Subsequently it constructs the initial and final marking of the synchronous
product net and initializes a set C which contains markings already visited in
the search. We use a priority queue Q which stores triples of the form (M, g, h) ∈
B(PS) × R≥0 × R>0. In such triple, M represents in the synchronous product
net, g represents the best known cost so far of reaching marking M from MS

i

and h represents the estimated distance to MS
f from M , i.e. the heuristic for

11

Algorithm 1: A∗ (Alignments)

input : N = (P, T, F, λ),Mi,Mf ∈ B(P), σ ∈ A∗, h : NS × B(P)× B(P)→ R>0

output: γopt ∈ Γ (N, σ,Mi,Mf)
begin

1 NS = (PS , TS , FS , λS) = N ⊗ σ;
2 MS

i ←Mi] [p′i];
3 MS

f ←Mf] [p′o];
4 C ← ∅;
5 initialize priority queue Q ⊆ B(PS)× R≥0 × R>0 sorted ascending by the sum of the

two last tuple arguments;

6 Q.enqueue(MS
i , 0, h(N

S ,MS
i ,M

S
f));

7 while |Q| > 0 do
8 (M, g, h)← Q.dequeue();
9 C ← C ∪ (M, g, h);

10 if M = MS
f then

11 return reconstructed alignment by traversing from MS
f back to MS

i ;

12 foreach t ∈ {t′ ∈ TS |M [t′〉} do
13 M ′ ← (M \ •t)] t•;
14 if @(M ′, g′, h′) ∈ C then

15 g′ ← g + cm(λS(t));

16 if ∃(M ′′, g′′, h′′) ∈ Q(M ′ = M ′′ ∧ g′ < g′′) then
17 replace (M ′′, g′′, h′′) by (M ′, g′, h′′) in Q;

18 parent(M ′)← (M, t);

19 else if @(M ′′, g′′, h′′) ∈ Q(M ′ = M ′′) then

20 Q.enqueue(M ′, g′, h(NS ,M ′,MS
f));

21 parent(M ′)← (M, t);

22 return failure;

M . Sorting of Q is based on the sum of the last two tuple arguments, i.e. for
some tuple (M, g, h) this is g + h. While the queue is not empty we remove its
head and add it to collection C (line 7). If the head represents the final marking
we return the corresponding alignment by reconstructing it using the parent
pointers, set in line 18 and line 21. If not, we fire each enabled transition in the
given marking and investigate the new marking (foreach in line 12). If there
is already a tuple in C containing the new marking we do nothing (line 14). If
not, we check whether Q already contains a tuple with the new marking. If so,
we replace that entry if we now reach the marking with a lower path cost, i.e.
g′ < g′′ (line 16). If no tuple containing the newly obtained marking exists in Q,
we simply insert it together with its associated path costs and heuristic value
(line 19). In case of adding or replacing an entry in Q we update a pointer parent
from the newly reached marking M ′ to tuple (M, t), stating that we are able to
reach M ′ cheaper by firing t in M .

If we use an underestimating heuristic function, Algorithm 1 is guaranteed to
find an optimal path from MS

i to MS
f . Hence, line 22 is never reached. If we reach

a marking that is already present in C, we ignore this completely. Note that this
is only feasible, if we are guaranteed that once we add a triple (M, g, h) to C we
are never able to reach that state using distance g′ < g. This, in turn, is guar-
anteed if the following consistency property holds: d(M,M ′) + h(N,M ′,Mf) ≥

12

h(N,M,Mf), where d(M,M ′) represents the length of the shortest path in the
state space of N from M to M ′.

We are able to parametrize and/or change several characteristics of the al-
gorithmic skeleton, e.g. the second order sort criterion of Q and the heuristic
function. In the upcoming section we discuss each of these changes in detail.

5 Parametrization

In this section we present parametrization and/or changes applicable to Algo-
rithm 1. All changes presented here are in line with the implementation in ProM.

Heuristic Function Observe that a trivial, naive, admissible and consistent
heuristic for any marking in the synchronous product net is simply making all re-
maining activities corresponding to that marking synchronous, given that there
exists at least one transition t with a corresponding label. For example, consider
marking [p1, p2, p

′
1] in the synchronous product net in Figure 3. Regardless of

how we ended up in the marking, the remaining activity labels are the sequence
〈b, d, e, g〉. Since for each label in that sequence there exists at least one syn-
chronous transition with a similar label, a naive underestimate of the remaining
costs is 4ε. Note that this estimator completely ignores whether or not these
equally labelled transitions are actually able to fire, at some point in the future,
given the current marking. Moreover, the heuristic completely ignores the model
part of the alignment (white transitions), i.e. several markings have an equal
heuristic.

Alternatively, we exploit the state equation of Petri nets as a basis for a
heuristic. Let A denote the incidence matrix of a Petri net N = (P, T, F, λ) (A
is an |T | × |P | matrix with A(i, j) = 1 implies pj ∈ ti•, etc.). Furthermore,
let x denote at |T |-sized column vector of integers. Let Mi and Mf denote

two markings and let σ ∈ T ∗ s.t. (N,Mi)
σ−→ (N,Mf). Furthermore let mi

and mf denote two |P | sized column vectors representing Mi and Mf , with
mi(i) = Mi(pi) and mf (i) = Mf (pi) ∀i ∈ {1, 2, ..., |P |}. The state equation
states that when we instantiate x as the Parikh vector of σ, i.e. if transition ti
occurs k times in σ, x(i) = k, then x is a solution to mf = mi + Aᵀx. The
opposite however does not hold, i.e. if we find a solution to mf = mi + Aᵀx, x

is not necessarily a Parikh representation of a σ′ ∈ T ∗ s.t. (N,Mi)
σ′−→ (N,Mf).

Nonetheless we are able to utilize the state equation for the purpose of cal-
culating a heuristic. Given any marking M (with vector form m) within the
synchronous product net, we try to find a minimal solution to mf = m+ Aᵀx,
where A and x are defined in terms of the synchronous product net. Let c de-
note a |T |-sized vector where each index i has value cm(λ(ti)) for each transition
ti in the synchronous product net. Vector x that minimizes cᵀx is a minimal
solution to mf = m + Aᵀx. Observe that, by contradiction, the value cᵀx is
always a lower bound for the actual cost to reach Mf from M . Such solution is
easily found by, for example, using Integer Linear Programming (ILP) [13].

13

The ILP-based heuristic is expected to be closer to the actual costs of the
shortest path in the synchronous product net’s state space, compared to the
trivial heuristic. Hence we expect, when using the ILP-based heuristic, that the
A∗ algorithm visits less states during execution and moreover on average stores
less states in the queue. A trade-off is obviously the increase in computation
time of the heuristic. Note that we are able to relax the computation time by

relaxing the Integer Linear Program to a Linear Program, i.e. x ∈ R|T |≥0. This as
a consequence leads to more severe underestimation of the true costs.

When using Integer Linear Programming to find a minimal solution to mf =
m+Aᵀx, we are able to estimate, and in some cases derive exactly, the heuristic
of future states. Assume that we find a minimal-cost solution x to mf = m +
Aᵀx based on some marking M in the state space of the synchronous product
net. Take any t ∈ TS with M [t〉. We know that for marking M ′ = (M \ •t)] t•,
we have mf = m′ + Aᵀ(x − 1t), i.e. mf = m′ + Aᵀx′ has a solution with
x′ = x − 1t. Now assume that there exists some vector y that is a strictly

smaller solution to mf = m′+Aᵀx′ than x−1t. Since we know that M
t−→M ′,

we know that y + 1t is a solution to mf = m+ Aᵀx with a strictly lower cost
than x. This however contradicts minimality of x, hence c(x − 1t) is a lower
bound for h(NS ,M ′,Mf), i.e. c(x− 1t) ≤ h(NS ,M ′,Mf). In the more specific
case that we fire ti in M with x(ti) > 0, we deduce, by similar rationale, that
c(x − 1t) = h(NS ,M ′,Mf). Thus, based on solving one ILP for a marking M ,
we in some cases already know the heuristic for the next state M ′, and in some
cases we know a lower bound. Therefore, if we know the exact heuristic we do not
need to solve new ILP’s and simply add/update the heuristic of M ′ to c(x−1t).
If it is a lower-bound, we also add/update the heuristic of M ′ to c(x − 1t),
and mark a boolean flag related to M ′ stating that we have a lower bound. In
case the tuple related to marking M ′ gets on top of the queue we actually solve
the underlying ILP to get the exact heuristic. This potentially moves the tuple
further down the queue. Hence, we postpone and potentially reduce heuristic
computation, yet we increase the number of polling operations to the queue.

Second-Order Queueing Criterion Within the algorithmic skeleton we use
queueQ that uses the sum of the g and h values as a sorting criterion, i.e. in terms
of A∗ this is referred to as the f -value. Multiple markings of the synchronous
product net exist that have the same f -value. By default the ordering of markings
with an equal f -value is random. Alternatively, we pose two second-order sorting
criteria. If we use the h-values as a second-order criterion, we effectively traverse
the states with an equal f -value in a depth-first manner, i.e. we explore states
that seem to have a better solution first. Alternatively, if we use the g-values as a
second-order criterion, we traverse states with an equal f -value in a breadth-first
manner, i.e. we explore states that have a minimal actual distance g to the start
state first.

Restricting Transition Firing Reconsider the synchronous product net shown
in Figure 3 with marking [pi, p

′
i]. Observe that there are three firing sequences

14

in the net to achieve marking [p1, p2, p
′
1], i.e. 〈t1,1′〉, 〈t′1, t1〉 and 〈t1, t′1〉. The cost

associated with 〈t1,1′〉 is ε whereas the cost for 〈t′1, t1〉 and 〈t1, t′1〉 is 2. We ob-
serve that both possible permutations of the sequence containing t1 and t′1 have
the same cost and can both be part of a (sub-optimal) alignment. In the general
sense, assume we have some alignment γ = γ1 · γ2 · γ3 ∈ Γ (N, σ,Mi,Mf) s.t. γ2
only consists of log and model moves. In sequence γ2, if we swap any adjacent
log and model move, yielding γ′2, then also γ′ = γ1 · γ′2 · γ3 ∈ Γ (N, σ,Mi,Mf)
and, trivially, κ(γ) = κ(γ′).

Hence, to find the optimal alignment we need to traverse one specific per-
mutation of the path to the optimum, rather than all possible permutations.
The A∗ algorithm already limits the number of visited states and also choosing
an appropriate second-order criterion helps in preventing this. In its basic form,
every enabled transition in a certain state is added to Q. However, we are able to
limit this number of states by exploiting the previously mentioned property. We
are able to manipulate the foreach-loop of Algorithm 1 (line 12) in two ways:

– If the transition leading to the current marking relates to a model move we
only consider those transitions t that relate to a model or synchronous move.

– If the transition leading to the current marking relates to a log move we only
consider those transitions t that relate to a log or synchronous move.

Observe that the pointers stored for each marking allow us to make such decision.
In the first option we are not able to schedule a log move after a model move. The
other way around is however possible, i.e. we are allowed to schedule a model
move after a log move. The second option behaves exactly opposite, i.e. we are
not allowed to schedule a model move after a log move.

6 Evaluation

In order to observe the effect of the parameters presented in Section 5 in terms
of performance, i.e. computation time and queue size needed, we designed an
exploratory experiment. The experiment is designed as a scientific process min-
ing workflow [6] and was implemented as a RapidMiner workflow, based on the
RapidProM extension (workflow and results available at: https://github.com/
s-j-v-zelst/research/releases/download/2017_ataed/experiments.tar.

gz). We present the corresponding results here. Prior to this we present the ex-
perimental set-up.

6.1 Experimental Set-up

To analyse the effect of different values of the parameters presented in Section 5,
we use a scientific workflow that, conceptually, performs the following steps.

1. We generate 11 (block-structured) Petri nets with k labelled transitions,
where k is drawn from a triangular distribution with parameters {10, 30, 50},
for increasing levels of Parallelism (from 0 to 50% in steps of 5%) [8]. The base

15

Table 1. Parameters used in experiments based on Section 5.

Parameter Type Values

Heuristic (h) Categorical NAIVE

ILP without lower-bound estimation

ILP with lower-bound estimation

LP without lower-bound estimation

LP with lower-bound estimation

Second-order Queueing Criterion Categorical RANDOM

DFS (sort on h-value)
BFS (sort on g-value)

Transition Restriction Categorical NONE

MODEL

LOG

distribution of the three constructs sequence, exclusive choice and parallelism
are 46%, 35% and and 19% respectively. This distribution is estimated based
on the percentage of process models that contain such constructs, obtained
from [9]. When increasing and/or decreasing the level of parallelism, we
distribute the probabilities of generating the other constructs accordingly.

2. For each Petri net, generate an event log with n cases, where n is a random
number between 100 and 1000.

3. For each event log, add increasing levels (from 0 to 50% in steps of 10%) of
one type of noise, i.e. remove activity, add activity or swap activities.

4. For each “noisy” event log, do conformance checking against the Petri net it
was generated from, using all parameter combinations listed in Table 1.

All generated Petri nets are block-structured and have no loops. We do not
consider more advanced Petri nets containing duplicate labels and/or invisible
transitions. Hence, the state space of the models considered is strictly finite.
Nonetheless, 56.700 conformance checking operations were performed.

6.2 Results

In this section we present the results of the experiments performed. We first
assess computation time performance, after which we focus on memory usage in
terms of queue-size. Due to space limitation we only show results per category,
i.e. we do not focus on parameter interaction. Moreover, we only present results
in which (seemingly) significant differences are observed, and, parallelism levels
up to 35%. For the optimizations based on the state equation, i.e. using linear
programming and/or lower-bound estimation we did not encounter notable dif-
ferences in terms of computation time and memory usage. The same holds for
the parameters based on the use of transition restriction.

Computation Time In Figure 4 we depict the average optimal alignment
computation time in milliseconds, when using either the naive heuristic, or the
ILP-based heuristics, without relaxation and/or lower-bound estimation. Each
plot in the figure represents a different level of parallelism within the generated
process models. We show parallelism from 0% to 35%. On the x-axis we plot

16

0.2 0.25 0.3 0.35

0 0.05 0.1 0.15

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
0

5

10

0

5

10

% Noise

A
vg

. C
om

pu
ta

tio
n

T
im

e
(m

s.)

Heuristic
Naive

ILP

Fig. 4. Average computation time (ms.) per percentage of noise, plotted per level of
parallelism. Level of parallelism is displayed on top of the charts.

the percentage of noise added to the generated event logs. On the y-axis we
plot average computation time. We observe that for parallelism levels 0%, 5%,
10% and 15%, computation time of ILP is relatively stable and significantly
larger than the naive estimator. The computation time for the naive estimator
starts increasing when more noise is introduced for models with at least 15%
parallelism. For ILP we observe similar behaviour starting from parallelism levels
of 20% and higher. Interestingly, for 15% of parallelism the rate of growth of the
naive version is clearly higher than the rate of growth of ILP. In all other cases,
i.e. for parallelism levels of 20% and up, ILP’s growth rate seems higher than
the naive variant.

In Figure 5 we depict the average optimal alignment computation time for
each type of second order queueing criterion. For parallelism levels greater (or
equal to) 25% we observe a significant difference in computation time between
DFS and BFS/Random. We observe that the difference also increases with the
increase of noise within the event logs. BFS and Random are comparable in
computation time. The results of this experiment show that a preference for
states within the queue based on the estimated remaining distances is beneficial
for reaching a target state faster.

Memory Usage Here we focus on memory usage in terms of average queued
states. In Figure 6 we depict the average amount of queued states, when using
either the naive heuristic, or the ILP-based heuristics, without relaxation and/or
lower-bound estimation. As expected the state equation based heuristic, i.e. using
ILP, traverses the state space more efficiently leading to significantly less states
queued. Whereas the naive heuristic rises in terms of queued states both with
increases of parallelism and noise, the ILP-based heuristic seems unaffected by

17

0.2 0.25 0.3 0.35

0 0.05 0.1 0.15

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

% Noise

A
vg

. C
om

pu
ta

tio
n

T
im

e

2nd Order Sorting Crit.
BFS

DFS

Random

Fig. 5. Average computation time (ms.) per percentage of noise, plotted per level of
parallelism.

the amount of noise introduced. The number of queued states slightly increases
when the level of parallelism is increased, however, it is orders of magnitude
smaller than the increase of the naive heuristic. Based on these results, together
with the computation time results, there seems to be a clear trade-off between
using ILP or a naive heuristic function in terms of computation time versus
memory usage.

In Figure 7 we depict the average queue size for each type of second order
queueing criterion. We observe that, like in the case of computation time, the

0.2 0.25 0.3 0.35

0 0.05 0.1 0.15

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

0

200

400

600

800

% Noise

A
vg

. Q
ue

ue
d

St
at

es

Heuristic
Naive

ILP

Fig. 6. Queued states per percentage of noise, plotted per level of parallelism.

18

0.2 0.25 0.3 0.35

0 0.05 0.1 0.15

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

0

100

200

300

400

% Noise

A
vg

. Q
ue

ue
d

St
at

es

2nd Order Sorting Crit.
BFS

DFS

Random

Fig. 7. Queued states per percentage of noise, plotted per level of parallelism.

DFS variant outperforms the other two. The difference is however less prominent.

7 Conclusion

In this paper we have presented multiple ways to parametrize the A∗ search
algorithm used in optimal alignment computation. Some parametrization con-
cerns 2nd-order sorting criteria within an internal priority queue used, whereas
other parametrization utilizes Petri net theory. The parametrization discussed
is in line with, and limited to, the current implementation of optimal alignment
computation in the process mining tool-kit ProM. As such, this paper acts as
a high-level description of the current implementation. We have performed an
exploratory evaluation of the effects of different parameter combinations w.r.t.
the number of states queued and the computation time of finding optimal align-
ments. Our results show that, for the class of models considered, using a naive
heuristic outperforms the more advanced state-equation based heuristic in terms
of computation time. Moreover using the heuristic value as a second-order sort-
ing criterion for the internal priority queue is beneficial for memory usage and
computation time.

Future Work The results of this exploratory study show that parametrization
of the heuristic search has an impact on its performance. We plan to extend the
current evaluation using a larger variety of Petri nets and a larger number of
iterations per model-log combination.

Several approximation schemes exist for A∗, e.g. using a scaling function
within the heuristic. We plan to assess the impact of these approximation schemes
on alignment computation as well. We additionally plan to examine the use of
alternative informed search methods such as Iterative Deepening A∗ (IDA∗).

19

Finally, we plan to adopt (prefix-)alignment computation in an online setting.

References

1. van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases 31(4), 471–507 (2013)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. Wiley In-
terdisc. Rew.: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

4. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine Your Processes
and Not Just Your Data. CoRR abs/1703.03740 (2017)

5. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven
University of Technology, Department of Mathematics and Computer Science (Jul
2014)

6. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific Workflows for Process
Mining: Building Blocks, Scenarios, and Implementation. STTT 18(6), 607–628
(2016)

7. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Trans. Systems Science and Cybernetics
4(2), 100–107 (1968)

8. Jouck, T. and Depaire, B.: PTandLogGenerator: A Generator for Artificial Event
Data. In: Azevedo, L., Cabanillas, C. (eds.) Proceedings of the BPM Demo Track
2016 Co-located with the 14th International Conference on Business Process Man-
agement (BPM 2016), Rio de Janeiro, Brazil, September 21, 2016. CEUR Work-
shop Proceedings, vol. 1789, pp. 23–27. CEUR-WS.org (2016)

9. Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards Understanding Pro-
cess Modeling - The Case of the BPM Academic Initiative. In: Dijkman, R.M.,
Hofstetter, J., Koehler, J. (eds.) Business Process Model and Notation - Third In-
ternational Workshop, BPMN 2011, Lucerne, Switzerland, November 21-22, 2011.
Proceedings. Lecture Notes in Business Information Processing, vol. 95, pp. 44–58.
Springer (2011)

10. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-Entry Single-Exit
Decomposed Conformance Checking. Inf. Syst. 46, 102–122 (2014)

11. Murata, T.: Petri nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (Apr 1989)

12. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Inf. Syst. 33(1), 64–95 (2008)

13. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics and optimization, Wiley (1999)

14. Taymouri, F., Carmona, J.: A Recursive Paradigm for Aligning Observed Behavior
of Large Structured Process Models. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings. Lecture
Notes in Computer Science, vol. 9850, pp. 197–214. Springer (2016)

15. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) Information Systems
Evolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected
Extended Papers. Lecture Notes in Business Information Processing, vol. 72, pp.
60–75. Springer (2010)

20

